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INTRODUCTION

A periodic structure is one ,ich consists of a number of identical substructures, called

periodic units, coupled together to from the entire structure. There are in general two types of

periodic structures -simple periodic structures and cmpound pr'iodic structures. A simple periodic

structure is one which consists of basic periodic units which cannot be divided further into identical

subunits. Figure 1 shows an example of such a structure. Figure 1 shows a unifcrm beam

supported at spacing e. Oscillators are attached at midspan between the suppots as shown. The.

oscdllators are modeled as consisting af mass (md), elastic stiffress (spring constant kd) and

damping (dashpot constant c,) A compound periodic structure corsists of periodic units which in

themselves are composed of identical periodic subunits. Thus a periodic unit in a compound periodic

structure is itself another periodic structure. Figure 2 shows an example of a con d periodic

structure. Figure 2 shows a uniform beam simply supported at spacing e where oscillators are

equally spaced vxithin the spars as shown.

Periodic structures have been ana' -Led using the concepts of a 'rcagation costant"

[1-3] and also by the '"transfer matrix m-hod" [4]. Th oncpt of prpagatin xnstants as applied

to wave propagaticn in periodic structures is reviewed in Appendix A. However, the derivaticn of

prcpagadon caistants is very cumbersorme, requiring the solution of forth - order partial dfferential

,uacrs in knost cases. Cn * cthe" hand, due :o rcnt ada nr-s in traefer matrics 15.51, he

ra.' fer matrix methcd ajpears to be less cumbersr-e. T ,is art ,cach permits a simple t.-atr-ent

:f =ericdic units wi.h cornlicated coniguratiacs and further,re, a matrix fcrmuLation L.-:st

suitable for periodic structures ci :ite total length since :he imrpcsiticn cf boundary ocrliticns at

*t-hr ends of the structure is straight forward [7].

1I this repcrt, an atter.pt is made to utilze tI transfer mar-ix method for aw.u!zng

%-Ne pm"Fgau n in periodic structures. Three examples are 6%tri to iustrate e "a-

:h. Th ,on na . wave ,cT'.arat3'n 'n n n d c-,. zi.erd .rst. 7is

.; -. .. ,.. .. , ., .. . .-. .. ... .. . . ... .. .. . . . -. .. . . . . . . . . . . .
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is flloved by mcre complicated problems which include vibration and wave propagation in both a

two-dimensicnal 3-bay planar lattice structure and a three-dimensional tetrahedral trs.

ANALY SIS

THE TRANSFER MATRLX METHOD

State Vectots

T1& identification of a state vectr is importam in applying the tranfer matrix method

to wav pmrpagadon and vibration of structures. The state vector z at a pcint i of an elastic system

is a colunmn vector, the components ct which are tl displacements at the point and the

ccrrespcnding internal forcs.

For example, in the longitudinal vibration of a straight rod, the state vector z consists of

compnents u and N, Afcre u is the longitudinal displacement and N is the axial forc. As

aother exarrle, for the analysis of the fnexural vibration of a Tirostrnko beam, the state vector

ccnists ca components w, t,,, M and V where w is the trasverse displacement, t, is the mtation Ln

radians of the cs-sectian, and M and V are tlr moment and the shear force, respectively.

In the analysis of a structure, if the time histcries of the state vectrs for specified

;ocations in the structure are krown, the vibration characteristic, as well as the wave proagaticn

chatacteiss:ics, can be d:temined.

Trirster MaLn ce

A ="ansfer ra,7rix elates the state vetor at a pxint kn a stct.ze to tle state ector at

another pcxnt in tJ same structure. It is an nxn matrix, fiere n refers to the num .r ,f

xrr4tcnents in te onrrespcndin state vectr.

Scre crrron t:a;sfe rnatricz are deniwci in Ap erti-c B thrc)h E. ThE 7 r.-.:!tra"-".

" 0ft --Tht arE, f:r.-i Lo "" " , 'e. ..-. anor cf %ktich is rtPd :a,.-i -is

0-

-- ... _4 . _ , - _ . . .. . , . , . .• _ . / . '-: , - .-



-13-

section) for longitudinal vibration in an elastic rod with distributed mass are derived in Appendix B.

The transfer matrix for longitudinaI vibration in an elastic rod with distributed mass and damping is

derived in Appendix C. The tranfer matrix for flexural vibration in an elastic beam with

distributed mass, including the effects of shear deflection and rotary inertia is derived in Appendix D

and the transfer matrix for both longitudinal and flexural vibrations in a bar with distributed mass,

including the effects ct sla deflection and rotary inertia, is dei.ed in Appendix E.

For example, the transfer matrix for logitudinal vibration in a straight rod relates the

state vectrs at the two end prints as (refer to Appendix B)

[ esinO

=sine cose L()

a-d for flexural vibration in a T'moshenko beram, the transfer matrix relates the state vectors at the

two end pints as (refer to Appendix D)

Co C0 .

C3o

M = SEJ EJ I -cI (X - )C3

'3'EJ

EJ EJL:'"
(C~ --c j2

2C, 31

--IV
. (c,,--rc3)) C2El
C O TC 2 f [c 1- ( c r -T ) c 3

Co 'rc

$ I" (rr

vb 're e suzscn~ip's R aMx L den,,te tle right an en d st *ra~a~ rejet~ ..F

- , & I I l It-..................................... ' ............ """"""" "'
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the definitions of the variables used in eqns. (1) and (2), refer to Appendices B and D respectively. '

Appndix C also shows the general approach for deriving the transfer matrix for

longitudinal vibration in an elastic rod with damping. Hoymver, since the introduction of damping

complicates the transfer matrices considerably, the problem of damping will not be considered here.

Uses af Trmsfe- Matrices

As mentioned previously, a transfer matrix is used to mlate the state vectors at two

specified pints in a structure. Notice that due to the sign anventions chcsen in deriving transfer

matrices, a transfer matrix becmes different wn a left end state vector of a particular element is

written in terms of the right end state vector as opposed to When the right end state vector is written

in terms of the left end state vector.

For e ample, for longitudinal vibration in a straight rod (refer to Apperdix B), the

transfer matrix from left to right relates the state vectors at the two ends of the rod as

_ sin '

{C}s a 9 EA I {u IL(3)sin0 Cos ()

and the transfer matrix from right to left relates the state vectors at +&he two ends as

8o EA 0 f

It can be shown that the trasfer matrix in eqn. (4) can also be obtained by simply taking the

inverse of the transfer matrix in eqn. (3) and vise vetsa (refer to eqn. (B16)).

Ore of the useful and interesting characteristics of the transfer matrix method is that

transfer matrices can be rr-xultipiid to fcrn another transfer mtrLx wich represents a larger secn

cf a strwture. As a simple exar".re, co.mid.- Lt rd cf egth a .s shc%n in Figure 3. The rod is

-. •.~ o ° . . . ....
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.%

assumed to consist of two identical elemens, each of length f. Using eqn. (3),

f sin e
fu . cos8 .A e u I

M = os 8 (5)

-i, H ~ sin... 0o .

Co s 0 EAo e6

Subtituting en. (5) into eqn. (6) gi,,vs

e sin [ e sin""

= 8 HN~(7) .-.
co 8 ] EA 0 cs EA 8 7_ sin 9 cos 9 .. ~ 0 Cos 0 ,V .':-

Since A and C ar the lt and right end p cints of a rod o length 2e, eqn. (7) states

that the transfer matrix for longitudinal vibration ci a rod of length 2? is equal to the product c"

two transfer matrices for a rod c length e. To prove the validity of such a statement, Ent calculate

the product of the two transfer matrices. Some mathematical manipulations give

Osin 0 e sin e? s n 2 -
cos e EA 8 Co a} EA 9 Cos 20 "EA 29

__-sin cs 6 _- sin 9 cos 8 si.". os2

Since 0= wv l (refer to A-priix B),

* 9= " eqi. (7) can be otaLned by substituting 2U fr Lin the tranfer matrix in eqn.•

fma,

,* 7,7
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(3). Thus, the transfer matrix for longitudinal vibration of a rod of length 2? is indeed equal to the

product of two transfer matrices for a rod of length e.

In fact, the technique of transfer matrix multiplication can be applied to more

cmplicated structures since the intermediate state vectors can be substituted successively to obtain

the transfer matrix for the entire structure. It is this characteristic which makes the transfer matrix

method a favrable approach in analyzing periodic structures. Thus, transfer matrices can be

combined in such a way that intermediate state vectors can be eliminated.

For a specific problem, the excitation and the boundary conditicms must be specified.

When an excitation is applied to a structure, say at point (or station) p, the state vector becomses

discontinuous at p. The problen is solved using the boundary cmditions. This is illustrated in the

next pragraph. For example, cnider the rod shown in Fig. 4. Te rod onsists of four identical

rod segments of length e and is loaded by a sinusoidal axial force of magnitude N. at point C.

Now assume that the rod in Fig. 4 is broken at C. Fig. 5 shovs the forces at the left

end and the right end of the rod at C. Since displacements are continuous in crossing point C (that

is, UL at C uR at C),

} } N (9)

xfrre C, and CL de te poins tjusttothei ust to the left of C, Secvely.

tT ) be the trammf.7r matrix represented by the 2x2 matrices in eqn. (3) vhen e in
parmtheses signifies that T is for the transfer matrix of a rod of length e. At CL,

{N}L =T(e)T(f) u a (0)

Sice the rod is assvxned to be a c-ntinuoas tember with no impedance mismatch, mruhipl)ing

- .. . . ~ C. 2 A ? .. '.°



-17--

T (f) n ties is equivalnt to replacing I by ne in T. Thus, eqn. (10) can be rewritten as

CL=T(2e)N (11)

Using eqn. (11), eqn. (9) benes

((12
{NIc = T (2) NI A + t(1) (1

Hov'emr, for point E,

= T (2f) (13)

Ccmbining eqn. (12) and eqn. (13) gives

{N} =T(2e) (2f) +{.jj

cr

S= (4e) + T (2f) (14)

at tdr boundaries, sixe the *I-& displacements are specified (thtat is, u -0), eqn. (14) can be

writen as

{ T (4) +T(2e) (15)L, V)A INoI

Eqn. (15) can be soved to obtain the internal forces at A and E. In other wcrds, the

state mctcrs at A and E can be cbtaind by impoing the boundary conditions.
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Since this is steady state vibratim, the state vectcr at intermediate xints in the rod a-n

be obtained using either om cf the bwnxdary state vectors (8] (that is, the state vectors at A cr E).

For example, for point B,

I.

{v} =T(e){N} (16)

or

{ a = Te-1(3e) { -r-'() (17)

and for point D,

{I T (3) + T (e) (18)

or

= .1
v I = T- (e) tvt (19) ':

r- (e) si 9 cs

is the transfer matrix in eqn. (3).

In addition, frequery re-poire functions for cther specific lccatiors in a structure can

be cbaied thugh the use c transfer matries [8]. With the frequency resporme furntic n,-

rndom %ibration can be xrsidered. Moreover, impulse r'cnse functi-,m can be generated fromn
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the frequency response functions, vireby tie histories of waves in a structure can be studied. [10] 5%

The relationhips between transfer matrices and propagation constants in periodic

structures has been investigated in [9]. It has ben found that at any particular frequency, the

propagation constants corresponding to the waves in a structure are equa to the negative natural V

logarithms of the eigenvalues Ct the transfer matrix relating the state vectors at the two eds of the

basic element constituting the periodic structure. Since propagation constants give information an

attenuations, wave numbers and phase changes for wave propagation in structures (refer to

Appendix A), the wave propagation characteristics can be readily obtained, via the propagaticn

ontant technique once the transfer matrix for a periodic unit is derived.

7,.5.-

*1 -- ml .. . . . .: " ". . . ."-"* - ' . . - " - "- " "
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APPUCATION OF THE TRANSFER MATRIX MWHOD TO AN ELASTIC ROD WITH DISTRIBUTED

MA4SS .2,t

Figure 6 shows th rod to be analyzed in this section. The rod has modulus d elasticity

E, mass density p and crcss-sectimal area A. In addition, the rod is assumed to be made up of six

identical rod segments, each of length e; thus them are no impedance mismatches throughout the

length of the rod.

State Vector

For longitudinal vibration in a rod, the state vector consists of a longitudinal

displacement compnent u and an axial force cmripnent N. Figure 7 shows the sign convention to

used in this analysis. Thus,

Z= (20)

Trasfer Matrices

The transfer matrices (from left to right and frcm right to left) for longitudinal

vibration in an elastic rod with distributed mass are derived in Appendix B. Frcan eqn. (B11), the

transfer matrix T %fich relates the state vector at the right end to the state vectcr at the left end of

an elastic rod of length e is given as

c s 9 E(A 2

aind frcn eqn. (B16), the transfer matrix T- %fich relates tl state vector at the left end to tr

state wctor at the right end cf an elastic rod is given as

.... ..... ~ -,..... ... i
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f sine 0~
T-. Co 0 s 0 (22)

* = [gJsine Cos8 (2

where the variables in eqn. (21) and (22) are defined in Appendix C. .4

Since tl rod to be analyzed in this section has a length of 6e, and since the rod is

assumed to have constant material and gecaontric properties thcoughout its length with no

impedance mismatches, it is onvemient to divide the rod into six periodic units, with each periodic

unit represented by a rod of length f. Thus eqns. (21) and (22) beom e the transfer matrices (from

left to right and from right to left) of one periodic unit of the system.

Uses of the Transfer Matrix

With the transfer matrices for on periodic unit of the rod defined, the state vector for

specific locatios of the rod can be obtained. For example, referring to Fig. 6, the state vector at C

going from left to right along the rod is given by

{Njc TT{N}A (23)
SA

or, which is the sarme, going from right to left along the rod,

VC =T - T T-T- ( "

SLice the rod has cons:ant material and geometric prperties throughout, eqns. (23) and

(24) can be simplified to

{ (2f)(,} (5)
' IC I

and
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U = -(4t)tNja (26)

wi-re the values in parentheses indicate the appropriate arguments in terms of e in the matrix T.

Notic that if there are iipeance mismatches in the rod, no such simplifition cn be made. For

eample, if section AB d the rod is made up of a material with modulus of elasticity 2E instead of

E as for the rest of the rod, eqn. (23) be..es

{V} T{N} A (27)

wir~re Trepresents thea nfer matrix for section AB andi is obtained by substituting 2E for E in

matrix T. Notice that eqn. (24) is not affected sine section AB is not included.

Damping can also be included in the tramfer matrix method. The transfer matrix from

left to right for longitudinal vibration in an elastic rod with distributed mass and damping is derived

in Appendix C. Assume that the rod in Figure 6 now has material damping wiich can be

characterized by a viscous damping constant c and has no imp dance mismatches. Tie state vector ,

at can still be ctained uing en. (23) but vith the transfer matrix T defierd by eqn. (C 11) of

Appendix C (instead cf eqn.(22)).

Tr frequency response fun'ticis for specific locatici in "the rd are derived in

Appctijx F. Appe-x'ix F also contair the general approach ui-debv the problem f forced

0icration in a rod can be tated .71h& rod is assued to b excited a sinusoidal axial force of

r-ag-Niude N, at E as slxn in Figure S. Frcrn eqn. (F 16),

NA(w) cos 2e (28)

cc 60

%here the subscript A denctes the respone location and the supcript E dx-ctes the ex.it.aticn

ccation and fir subscript N deetes an axial fcrce respore. Frm eqn. (F22),

.. .
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r p
sinO I

H ( c 20 .EA (2
co 681 aS e (9

Frcn eqn. (F 23),

* [2f sin 281
H )-+d= -a 20 lEA 28 .r+

ac 60 L es 28 E (30)

From eqn. (F 24),

3_ sin 38

H()= cos20 lEA 30
o [ cos 30 (31)

Fran eqn. (F 25),

4e sin 401
H = cos 20 lEA 4 (32

EL c 68 1 os 40 (32)

where the subscript E, stands for the point just to the left d E. Also, fram eqns. (F 31), (F 35)

and(F 36),

4f sin4.
EA 4.

(cs6 (33)"

where the subscript u denotes the displacme-nt respome,

4 sin4-9

HF, (w) (40.cos6e o sinO (4

and

L ° .o.. . °. - . - .. . . . *. . -
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4f sin4,

(W) EA 48 [ a:s2 (35)nl.( ) = DS66 12,cossin2o 8..

%tere the subscript ER stands for the xint just to the right of E.

The impulse response functicn at B is also generated in Apendix F. Due to the simple

nature of HE(W), the impulse respoe function is obtained in closed form. From eqn. (F 44), the

impulse response for the foce at B is given as

A Nhil(I) = -t-32kfN 4) - 5+4tV k
E, E

" -(7+24k)e /4]---6t -(9-+24k) E,] "

-4-[r -(15 +24k )t \/C ] 4 it -(17 +24k ) E

+6r (t 9~2k)e/~ -(21 #24kt~
E E

(36)

For an impulse excitation at E, eqn. (36) gis the time-histcry of the msponse to be

expected at B. Tvm points are of particular interest here. First, the fraction - in front of the

summation sign signifies that the amplitxes of the responses at B with resect to time is al~ays am

half of a delta function. This is expected because, due to symmetry in the rod, the axial farce

excitation is split up into tw" equal and opsite going waves traveling along 'Jx rod. Semn,

no tic that the term A has the unit of time. In fact, it repr-esnls t = m required fcr "he

a.dal v, we to -avel a distaxe ? a crg the rod.

Ln addition, at any prticular frequercy, the pmpagaticn mntant can ze obtained as the

regtie logarithms of the eigen values of transfer matrix T. Since T is a 2x2 matrix, there is cnlv

cne ruir of equal nrd crpcsite prpagation mntans, crresponding to two crsoite and identical

v,-%-s as noted earlier [9].

* v-. - .~ . ~ .-. -- . .- . --
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APPLICATION OF THE TRANSFER LATRLK.ETHOD TO A 3-RAY PLANAR LATTICE STRUCTURE

Figure 9 shows the 3-bay planar lattice structure to be analy'Zed in this section. For

simplicty, assume that tl orass-secticnal dimeicrms in the bars are small compared with the

lengths, and that the structure is made up of identical horizontal and vertical bar elements

throughout. Furthermore, the Timoshenko beam ndel is used for the bars such that the effects cf

shear deflection and rotary inertia are included in the analysis.

State Vector

Recall that the vibration and wave propagation in a structure are characterized by a

state ectcr z. In t case f the planar structure shown in Figue 9, for each bar, ti state vecto z

consists of three displacement compnent and three internal force compments. The three

displacnt a~pxrnts are u, w and whe, re u is the longitudinal displacment, w is the

transverse displacement and qi is the rotaticm of the crcss-section. IT thre, force compnents are

M, V and N, where M is the mcrment, V is the shear force and N is the axial force. Figure 10

shows the sign oonvention for the forces and the displacements. Thus

= {%}(37)
%, tere d is the displacement vector and p is the force vector such that

dan

art!

In analyzing the structure shown in Figure 9, state vectors correspcnxing to bth main

members I and II at reeded to describe thr vilraticn characteristics of the struct-re. The reason

for this is due to the chcice d Ut. transfer matries and Aill beaomre apparent in the =t section.

*Tus. fo a particul a section in. tlx sdruc i,'e sta:c 'ectcr Z of interes: is

-7
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da

(di)
z = (38)

wtt -e the subscripts denote member numbers. Notice that Z is used to differentiate the state vector

at a section in a structure from that of z, ,hich represents the state vector at a pcint in the

structure.

Tramnf Matrices

Two transfer matrices are invlved here. The first transfer matrix Xi, involves the

nasfer of state vectors in two bars, each of length t in main members I and II. For example,

members 12 and 12' together are represented by such a matrix. The second transfer matrix X:

in, oles the transfer of state vectors acrcss the junctions. The members wi, ch join main members I

and II cnstitute such a matrix. For ezmample, member 11 constitutes such a matrix. Figure 11

shows the 3-bay planar structure Awich has been sectioned into its nstituent parts resnsible for

transfer matrices X, and X2, TI= subscripts R and L wre used to denote points %wich are just to

the right and xints which are just to the left, respectively, of jux-tics ,ihich john main members I

and I1.

Transfer matrices X, and X2 are derived in Appendix G. From eqn. (CA),

0 0C C4 -..

3c 0 0 C4  :c~%
awyl f'm eqn (G S),

0 0
0 0 0

X' G.C 2G, -GC 'CIG 3  1 0 (0

GCC 'G I G.(!C IC G 3 0 1

The %ariabIes utsed in eqns. (39) and (40), namnely C,.Cr.C3,CCGI,G 2.G3 and G4, a="

Z-rd-_ in A.je.ixG.

"-.* . -. " . •. "*-'' '- . - . . - -. . " . ' " " . " ."" -" ."., - - -. • " " ... - .- . .".. . - . - - - • . -
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Uses of the Trnsfer Matric s

With transfer matrices X, and X2 defined, the transfer matrix T for one periodic unit of

the planar structure can be obtained. Figure 12 shows the planar structure which has been
..%,

sectiored into four basic segments, namely, ALOO'A;At., ArA1'BjBLAR, BRtB2eC.CL2Bq and

CtC; 3 3 CR. AAi1B'BLIA and BrBi2'CCCL2B each define a basic periodic urit while

A,.OO'A:AL define a left half-unit and CtC3'3Cg defines a right half-unit.

Consider first section AA; lBLB1ARt in Figure 12. For section 1L - 1,

(d,) d,
=t 1 2  

u11 (41)

IP "L1 L IP-I A:-A

* it-re X1a is the transfer matrix -Mich includes lengths of e/2 in both main menmbrs I and II, and

Nkire 1
L and 1 are points just to the left of points 1 andi 1', respectively. Similarly, for section

!j -1;, wthere 1 arid 1 are points just to the right of pints 1 and 1', respectivly,

d2 . (42)
jP11 P/I

*and for section 3L- 3,

dt d, :' t". ,

S(43)...X' 1 (43
* Pt) BL-q AI, 1 R

Substituting eqns. (41) and (42) into eqn. (43) gives

/I I -- , It2 I (44)

* I i'LB AA i

Since section ArA~1'B~lEAe is rrprescntative cf a periodic unit, the transfer natrix T for cm

periodic unit is obtaird from eqn. (44) as

%I %

SM

* ..~ '-'

m °
"3.1
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7.  xrf2X2x1 (45)

Similarly, the transfer matrix fr ALOO'A AL, denoIted by T- 2 is given by ,5

T--1 2 =Xr X2  (46)

and the transfer matrix for CRC;3'3CR , denoted by T112, is given by

T"2 =X 2XI 2  (47)

Notic that the transfer matrices T, T - 12 and T 2 am all transfer matrices %,hich relate state

vectors from let to right. In addition, the order of the transfer matrices cn the right hand sdes of

eqns. (45), (46) and (47) are important.

After the transfer matrices T, T- " 2, T 2 are defined, the state vectors at specific

sectins of the planar structure cn be obtained. For example for section C -C',

/  TTT'' (48)

'PI )C-c' IP: JOL.Oi

As another example, fcr section 3-3',

"d, d

II 1!3 r- 3 j I.PJOL-Oi
Th- frequency response functions for specific sections of the planar structure are derived

in Appenilix H. Tic planar structure is assumed to be exited by sinusoidal shear forces at C and"

C'. Ln addizkcn to deriving te frequency respome furricm for the planar structure, ArpendLx H

also gies the general apprcach whereby te problem of forced -vibraticn in a planar strucwure can be

treated. Frcm eqn. (-9) and eqn. (1110),

bn', 2 1 k31 k32 1b 33 b3.
b () b4' k4  k 42  143 (S)

and

0-2 -'" .". .'' " -"" ''. -.,. , - """ .-."- : '" , .' ." ' .
- ,..,,. ,",-.,-- . -,-, . ,. .. - ,, - - .. ,'

01
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IHACrb~l b i[k 31 kJi[ 33  (51
HA (w = - b31 b J k 41 k42  43 b"J(1

where the superscripts denote the excitatim loci andl the subscriF 5 denote the resone

locations. %s

* Frm eqn. (121) and! en. (H 12),

-c [b;1 bf irk3 , k. ] fb33 b

Frneq ( 0 ,c (H325a2)( 3)

b0 G b b k4l k42  j[ 43 b44J

-'[0 o~;~ bj k1 kb33 b 34]

-T12F~ b b~ [ k31 kn] [32 b..
1 [b bj k k 4 2 j[b 43 b

Fhria~ s. 30,( 32 an (H 31tgh6), aed±'dinAp~~H

H~~~~~A* -cG -b bb
\2~~±' ~ ~ (W re Iucrp qb 31nte the kns .1~ic k42 43eetadt~ ueicip r

(54

5* c w 711 bjb ~ 3 3 3
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In addition, at any particular frequency, the propgation constants cn be found by

ottaining the negatie logarithrm of the egenwalues of the transfer matrix T for one periodic unit of

the structure. Notice that since T is a 12x12 matrix, there are six pairs of opposite identical

ppt 
I

:
," *.

* N

-- I-...l
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APPLICATION OF THE TRANSFER MATRIX METHOD TO A TETRAHEDRAL TRUSS V

Figure 14 sho s a te'ahe sal wws which is used in this section. Ti tethedral truss

is assumed to conist c identical elastic bars with distributed mass and circular crcss sections, each -4
'4

of length e. Each connecting bar has modulus ci elasticity E, mass density p, shear modulus G,

crcs-sectienal area A, second moment of area inertia about the x or z axis J, second monent of

area inertia about the y axis J1 and radius of gyratim about the x r z axis i. Furthermnre, the

acrcss-secticnal dimensiom of each bar are assumed to be small compared with its length.

State Vectras

For each connecting bar in the tetrahedral tuss shown in Figure 1, the state vector z

consists of six force components and six displacement compments. The six force comorients are

M,MT ,V, Y, and N, where M, is the mciment about the y-axis, M, is the moment about the z-

axis, T is the torque about the x-axis, V, is the shear force along the z direction, V, is the shear

force along the y direction and N is the axial fdc. The six displacement compments include

u, v, w, q and e, where u is the lcngitudinal displacement, v is the lateral displacement in the v

diractim,, w is the lateral displacement in the z directio and 4 and O are rtation of the cross

section about the z, y and x axes, respctively. Thus, for each coecting bar,

PmS= {:.(53
,A-he, d is the disp!acement ,ec:cr such t-at

SU

V

and %bere p is the fca'rce ector such that

S '
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V,.

Figure 15 shows the sign convention fcr the force and displacement variables.

In the analysis of the tetrahedral truss, fcr a particular station (or section), the state

vectors in main members I through IV are needed. Tle reason for. this is due to the chice of UL-
S.

-tranfer matrices and will become apparent in the next section. Thus, for each particular staticm,

Z 4,v (59)Pr..

P/1-

*rre tsubcrts I, , Mor de testhm mber m er forhicdi cr pis defrid(refer

to Figure 14).

Tramtar Matrices

In t analysis of t tetrahedral tmms, three trnfer mnatrices, namely, V,,V2 and V3

are required. Figure 16 shows a segmnent of the tetrahed-al truss and Figure 17 shcs t segment

in Figure 16 hich is sectioned alcng piarr pmlel to t .z plane into the substnru

nrnsbe- for transfer muatrices V, V, and V3. Refer-ring to Figure 17, t sectioim are made by

cu*+tig t peidic unit along planes GAR, ID, ERKtRF, L (cr EL KLFL LL) aT'i HBL -CL. Tl~

subscripts L andi R used for pints E, A,D, F, K,L, B and C denote int just left andi right of

these pints, respectively. Thus, tr firt trzinsfer matrix V, represents the transfer of state vectors

in me~mbers -Afich join main mnznbers I and EII. For examuple, members AD and BL each

in 'cur 'cars, .ac i ie h e,'! n mi °n rnbrs I hr-uah TV NerIth 7rrj-,=s

dS?':°
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%ilch conrct member I to member II, member II1 to member II, member I to member IV,

member m to member IV. Referring to Figure 17, this includes members ARKL, IFL, DR LL, GEL,

AtfL, DRFL, AREL and DREL. r third transfer matrix V 3 is resposible for the transfer of state

I'=*xs in four bars, each of length t/2 in members I through IV together %ith membr which

connect member II to member I, member II to member MI, member IV to mrber I and Member

IVto beM. Figure 17,this includes members KtBLFJt, LCL, EH,F B,.

FR CL, EBk and ER CL.

Fhe transfer matrices V Y2 and V3 are derived in Appendix I. From eqn. (123), the

transfer matrix V1 is given as

1 00 00000
0 1 0 00 00 0
0 01 00000
0 00 10000
0 0 0 0 1 0 0 0()
G 2(C 3-CC2 t C)G 3 0 GZC4C-'G, 0 0 1 0 0
0 0 00010

-GC 2'CG 3  0 G4G2'G, 0 0 0 0 1

Fram eqn (I 64), the transfer matrix V2 is given as

fC: 0 0 0 0 0 0 c-
0jo 0 0 0 0 C2 0

V2 D.2 0 D: D,."DC C 4 0 ') 0

0 D5 Ds'Dj"C' D*.3 0 C 4 0 0

4 D3-D.-C3 D; 0 0 0 C; 0

D 0i9 0 0 0 C J,

From eqn. (1 5:), *r transfer matix 3 s given as

- . . . . . ..-. . . . . . . ..
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0 0 0 00 0 C-

0 C 0 00 c o
0 0 C 0 0C0 0

03  0 0 C C 00 0
V3 Eq 0 E13  E,,( E14'+C C; 0 0 0 ,,.

0 ES E7-+Ez-4C3 Ejo 0 C; 0 0.IN
EE 24-E6+C; E5  0 0 0 C 0

E5E1C ,0 E12 0 0 0 C;

(62)

The variable used in the transfer matrices in eqrs. (60) through (62) arm defi d in Appendix I.
0R

Uses of the Trimfer Matrices

With transfer matrices V,V 2 and V3 defined, the transfer matrix T for one periodic unit

of the tetrahedral truss can be obtained. Figure 18 shows the tetrahedral tuss sectioned into four

basic segments. Referring to Figure 18, segment 1 defines a left half periodic unit, segment 2 and

3 each defines a periodic unit and segment 4 define a right half periodic unit. Following the same

procduze used for the 3-bay planar structure in the last chapter, the transfer matrix for the left

half priodic unit, denoted by T , is given as

T-' 2 =V2V1  (63)

Similarly, the transfer matrix for a pericdic unit, denoted by T, is given by

T =V 2V1V3 (64)

and the trarsfer matrix fcr tl.h right half pricdic unit, denoted by T"', is gixtn by

T ',,- V ,V3 (65)

U';

"S - , ' " - , ' " " - . . m ' - " " - " '' " ' '
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NUMERICAL EXAMPLE

To illustrate the application cf the tramfer matrix method in the analsis of wave

propagation in periodic structures the case of a one-dimensional elastic rod is investigated. Th.

frequeny respomse functiom for specific locations for the longitudinal vibration in an elastic rod are

obtained Based on the results, the impulse respose fuc-tion for a location in the rod is

generated, whereby the wave propagation dharacteristics for both square pulse excitation and a

triangular pulse excitation in the rod are studied.

Figure 19 shows the rod to be investigated in this example. The rod is assumed to

consist of six identical rod elements, each cf length e, with no impedance mismatches and no

material damping throughout. The material and grtormtric prpe.rties in the rod are given as

E = 7.46 x 1010Pa (IQSX106//)

A = 6.29 X 10-M 2  (9.75x10-2in-)

p= ZTCTkg/m' (0 1 ebflin3 )

e 0.25 ( 0 in

%here E is tlt elastic modulus, A is tIe css.sectional area and p is the mass density.

lrequency response ifunctiora fcr specific lccaticrz in the rod due to a sint.scida,

a laa f'orc ecitation at pint E ha-m been generated in eqns. (23) through (35). Base'd cn these

result, a basic cormputer program, named PRC(1.BAS (rfer to Apendi:- J), is written to ctam

the frequency response functions nuxmericaly. For demrnstratim purpcses, a plot cf tLe frequency

respose of the force at B de to excitation at E versus frequency is shown in FigMre 20. Jumps in

t-c values cf t-ie frequency response function in Figure 20 signify resiance conditions. For

ccr-rison, the firt nine natural Lfequencies fr the rod ae tabulated in Tatie 1 [14]. Mod's 2. -

r a n , I arm rct shov, n mi F-,. 20 x-muse t,e exctatic'n ;L c,,es a rxxdaI Pint at

S;
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such frequencies. Howver, since PROGI BAS calculates the frequency respome functic at B at

discrete frequexy intervals, the values for the response at resonanxes are trunated by the program

and do no reach infinity. The impulse force respone functic at B due to a unit force excitaticm at

E is generated in eqn. (F44) and is given by

N h E (t- (3+24k e\/1P] - _ (5+24k)e,,E]
k -0 E -O-

- r - (7 +24 k t\/Y4- - -~ (9 +24k)f V '1

+ t- (15--24k)e\/4-i] + -r (l7-+24k)V'1

+ q- (19+24k)V\' " -4-" - (21+24k)fvE 'DI}

4 (66)
Based cn eqn. (66), a plot ct the impulse force response at B versus elapsed time

intervals is sl-ow in Fig. 21. A time interval of which is num rically equal to 4.95 x 105

sec is Lied. Note that \/-k is the time required for the impulse excitatic to trawl a distance f

along the rod. Due to symmetry conditicms, the impulse excitatic is divided into equal and opposite

going waves. each having magnitude equal to half a Dirac delta function, which explains the

amplitude af the response.

Phn, icafly. eqn. (i6) states that if a unit imi-ulse frce is applied at E at tixr-zro, a

form respnse c arzp1itud equal to half a Irac deta functicn will be cs*erved af--= 3 4

and so cn. To =mderstand this furher, refe to Fg. 19. At time zero, a trnit imuLse

forc ct positive magnitude is applied at E. Due to symnetry conditicn, this force is divided into

t" equal and crp ite going vvaw s, each having a magnitude equal to half di the applied

arrplitude. After thre time steps Ci fVi '. the 'eft-,ming %%a-e reachs B. Since B is now under
SE

cr.,s sicn, it axjer:cenc a force cf nea'ie m ii-ue. -is -p'.airs the fi-st r"e-o.z sho,-i in

" .1.

0.,¢

:-',;, , " :-".% :-; : -,: i--:": ::: -:-?- ; ;;- .,.--I.: ": i- -.;:_- _12 :,:::: ,- -;: ,: ). ,:-: :::?..:.;.-.::/ ::: 22)
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Fig. 21. Now, upon reaching B, the left going-wave tra~tis further along the rod until it reaches

the boundary at A after an additional tv 4- The wave is then reflected at boundarv A.

However, since boundary A is fixed, there is no sign change in the wae due to reflection and after

another tine step of f%" , it reaches B again, and now B experiences another force o negative

magnitude. This explains the response at 5e4 in Fig. 21. Now csider the right-going wave

at E. After two tine steps of - frczn tine zero, tI right-going ave reaches boundary G

and is reflected. However, since boundary G is a free boundary, the magnitude of the wvave changes

Icrn positive to negative. After another five time steps ci e V , this negative wave reaches B.

No% B experiences a force ci negative magnitude. This explains the response at 7tET in Fig.

21. The negaie wave then travels further along the rod and after f--- it reaches boundarv A
0E

and is reflected. Since bonary A is fxed, the is change in the sign d the a due to

refxdon and after ariother i it reaches B and B again experiences a negative force. This

explains d response at 9f in Fig. 21. Follzc-Aing the same pzodure, each individual
E

espcrse at B as gien &' eqn. (66) mn be explained.

Cnce the im"ulse resprne r n is ctaired fcr a particu-a Iccatcn, tlL resh rse

,;e to -:zer fcrms of excitation can be cctaL-ed us ng the ,elaticn [10]

1yP(t) --f h;(t--r) x (r) d (T) (67)

%-."e %q (t, is tlr rescomre function ard x(-) is the e.xatic i function. In addition, fcr tle-

fu5 p- (t) a.d h4 (r-), the subscript a doe.-es tIe type of respxise (fca example, axial

forc-). te sutthscript p dtcs the -x.n..se Iccation ard Le si..bscrirt q derxtcs ttv excitaticrn

" J-'. ?" '' .: : ' '" "' , : : , r : d ' . - . " . " . ' " " " " _" , ' . - '. . ." ' ' .". " ' ' -
i i II I d I I II- I - - I . . . -
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location.

For the present case, if the rtod is excited by an excitaticn furntion x(r), the response

,,VE (T), can be obtained by substituting ,h (i) f.ra eqn. (66) into eqn. (67). Because ,h (-) in

eqn. (66) consists c eight Dirac delta functions, each Dirac delta function has to be integrated

separately. For example, onsider the term qt- (3-t-24k)t/E 4-] in eqn. (66). The resonse

,, >.j (t) due to this funtion is given by

1V(t) =f t 8- (3+24k)e\/ - "t]x (-)d- (68)

vore the superscript 1 de,'oes the response is due to the first Dirac delta ftu-ticn in eqn. (66).

Using thi relation [10]

f E(T -r) f(T) dr =f(T) (69)

here f((r) is any funmctici, eqn. (68) becom

,V(t) =x [t- (3+24k)e ](70).

T1e same procedure can be applied to the other Dirac delta functions in eqn. (66) to dbain the

total response %,'() f-rom the integral in eqn. (67) as

=7z{-x ft-3+~24kfNT* - xft (5-24kfN741]C
E E~

-x r -(7 -24k )V -- - x t - (9 --24k)
-x ft-(15-2-4k )g ], t-7--4) ]

E

--x [t -(I9-24k )\'E] + x ,- (21 -24k )feV ]}

(71)

By tLsig eqn. (71), the respnse at E can be obtaLrd. two t es c" excitaticns are

annidzzed here to iustrate the apprmach.

V rst cc.-ider the rod to be ected at E by a square y.se x unit amplitude an- d-

S:
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durati Thus, the excitation Xl(-.) is given as

D or he p-'4se (2

If eqn. (72) is substituted into eqn. (71), the response y y (t) is obtained as

= -E-t{ -Xl[t- (3+24k e\/ k -X 1 [r- (5+I24k)e/4~

E E

+ Xj: - (1--24k )e\/1] + X[t - (1 -24kfA 4

(73)

Figure 22 sham a plot of the first few mrsm. With respect to time intenwals ofeT each.

* ~.1E

Similarly, if the rod is no~w excited at E by a triangular pulse of duratPi e-v- and a
E

peak amnplitude cft unity such that X,,(-) is gi,,en as -

-VT~

X 7 i-)"s- 5fV 4 (74)
E P 2 Er

~ fl.' aC 'at3 cth fec o i se ~ s

if=.(4 ssbSttdLt)cm.(1 rrscz sgvna

*~I '..-- Y$,.*** X2[t-- - (32.: N/ * *2
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T1r explanation~ of t physical irn.Iicaticrm f both eqns. (73) and1 (75) are ,y sirmilar

to that of eqin. (66) and1 thus are not explained further.
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CONCLUSIONS AND RECOMMENDATIONS

Tbe transfer matrix mnethod is observed to be a simple and straightforward approach in

analyzing wave propagation and vibration in periodic structures. With the recent advances in the,

field of transfer matrices, the transfer matrix method becomes even more favorable. The transfer

matrix method permits a simple treatment cf periodic units with amplicated arfigumticrs.

Moreover, a matrix farmaticm is most suitable for periodic structures of finite total length since the

imposition of the boundary conditics is straightforward as is oiser d in the analyses given for the

one-dimensional elastic rod and the 3-bay planar lattice structure. Some commort properties of

transfer matrices are outlined in Appendix K, which may serve to simply calculations in applying

the transfer matrix method. The transfer matrices for longitudinal vibration in an elastic rod, as

givenineqns.(B11)and (B 16) in Appendix B and the transfer matrix for flexural vibration in a

T'inoshenko Beam as given in eqn. (D 16) of Appendix D are reed in Appendix K to denstrate

tihe prmperties outlird.

In addition, with the aid of omputers, the transfer matrix method can be applied with

little diffultv once tl transfer matrix for a periodic unit is formulated, as is demostrated in the

numencrial example.

However, there is ne setback in the transfer matrix method. If a periodic sxucture to

be armlvzed comists of a large number of repeating periodic units, the numerical app lcaticn of the

t'ansf-r rr.atrLx m.ethod requires multiplication cf a large nmber of transfer maices together, the

product of %hich may becre enormously large and dii:t to handle, even Nith the aid of a

computer. In addition, if the elements in a transfer matrix are frequency dependent, they become

larger and larger with iremasing frequencies. TIh accuracy of the transfer matrix method may be

signifintly reduced due to the operations of large numbers. This is dem.strated by the

L-accurades in obtaining the determinant of the transfer matrix for flonzal vibration in a

T7--,ohenko Beam at high frequencies in Apendix X. To accommodate for this, non-

-'....-.. .. ........7<--.i , , , - - , .-.. ,....... . .. . ,";-- - -- - . . ... .. ,...-.,,o..,......,,-............,.... ;,,... - -,*;
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dimmenicmalized forms of transfer matrices should be used. For illustration purpose, A+7endix L

shos the derivation of the non-dimensionalized forms for the transfer matrices for a 3-bay planar

lattice structure. Table 2 shows the calculated values of the determinant of the transfer matrix of a

Tuncdenko beam (using program DET2.BAS in Appendix K) based om various values o the non-

dimensicnaized parameter fIl obtained in Appendix L using both single precisin and double

predsim on all variables. It is cbservd that the value of the determinant is not calculated crrectly

to be unity when fl reaches a value of 4 for single precisio calculations, and a value of 7.5 for

double precisim calculatiom. Furthermore, the disagreement in the calculated results fr single

precsion calculations and double precisic calculations again justifies the inaccuracies of the

cmputed results due to operations of large numbers.

Another alternative is to use Cayley-Hamiltm thecrem [7] whien multiplying transfer

matrices. Cayley-Hamiltm theorem expands the product of a number of transfer matrices as a

linear combi.aticn of n independent analytical funtins of the transfer matrix T, wbere n denes.

the dirnericm of T. According to the theorem,

41 Tj  T - J  T j -T - j  (76)
T+ a 2 + 2

%frre aJs and b,'s are costants and K is the number of times transfer matrix T is multiplied to

itself. The constants a's and b's can be obtained y substituting for T the igenvalues of T in eqn.

, ). For =xarv.ple, if tramfer matrLix T is a 4x4 rratrLx, and if t four egenvalues d T (refer to

A;Terjdix K) are suctiruted successively to eqn. (76), four indepe-xwent equation, %ith aj s and

b;s as the only unkmwns, are cbtained. By sohing tese four simulta.oxm equaticr, the

un3,ow-n as and b;s can be determined. Eqn. (76) can even be applied to obtain Tk. The

Ca'y--LamiLruc thecrem becomes far. abe %,n the number of multiplication exceeds ,e"

dirnersion d t tamfer matrix. This is because, aoc,-xiLng to eqn. (76), the bighest pt-Ar in T is

- .2.i-endnt cn the value cf k.

.. .. .. .. .. . .- , - .. " ".. o- . ..- "-....-" .. €.-" .- .. ,'", '.-;." .. ,-
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Table 1. Tabulated Values l t Natural Frequencies c a
Six Segment Rod (refer to Figure 19).

Principal Modes Natural Freuenc-. (radlsec)

- 12f -1 il2.

1 5335.73 .5

2 16007.19

3 26678.65
40

4 37350.11

5 48021.57

6 518693.03

7 69364.49

8 80035.95

9 j9070741l
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Table 2. Computed Values o Tie Determinant of Transfer matrix
for T'mhhenko Beam fcc Various Values

40 of u? using Do~uble and Single Precsicns.*

Iterminant of Transfer Matrix
for T'inmcshnko Beam

Single precision Double Precision

0.5 100000 100001
11) 1.000015 1l000013
15 1.000191 1.00031
2D 11)00328 0.999764
2.5 0.999418 0.999844
3.0 0,998260 100488
3.5 1.001465 0999756
41) 0.990234 1)02930
45 0S60351 11)03906
5D) 1.193359 0.980469
55 -0.359375 0996094
6D 1283203 11)03320
6.5 4.146484 11)85938
71) -17.234380 1.041992
75 7S898438 11)23438

* 8.0 -95.906250 0.781250
8.5 287.125000 0.625000
9D 418250000 0250000
95 360.000000 31)0000

,10. -1380500000 -1.000000

Eastic mod~ulus is 7.46x 1010 P. (10.8 x106 psi) ,shear modulus is 2.75x 1010 P. (4.Ox 106 psi),

cross sectional area is 6.04)00-5ml (9.375 x10-in), second moment of area inrtnia is

4.55 x10- 10 in'I (ID98x40-3 in 4), mass density is 7 2kg fm 1(0.1 lbf /in 1), Mdius of gyraticz is

2.71x 10-3 m (1IJS38X1O' in). andi length in 2.43X10-- m (9.75 in)

. o.
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kd Cd

0yv

* PERIODIC
UNIT

Fig. 1 A simple periodic structure.
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SUBUNIT
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UNIT

Fig. 2 A compound periodic structure.
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E,A, p

Fig. 3 An elastic rod of length U- with distributed mass.
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E,A, p

Noeiwt

Fig. 4 An elastic rod with distributed mass and sinusoidal
axial force excitation at point C.
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Fig. 5 Internal f orce s at C. (R a f r to Fig. 4)
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Fig. 6 An l1astic rod of length 62 with distributed M3Ss.
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(P NL -- *XURNR

Fig. 7 Sign convention for longitudinal vibration
in an elastic rod.

S,
.. . . . . .. . . - .
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p, A, E

AB C D EFG

/ Not It&~t

Fig. a An elastic rod loaded by a sinusoidcl axial force ct E.
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A B 2 C 3
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Fig. 9 A 3-bcy plcncr lattice structure.
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VL, -WL

ML,~Vp -WpMI

fw

Fig 10 Sign convention for the longitudinal and flexural
vibration in a TiMo3henko beam.
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0 -- TRANSFER MATRICES X2  MAIN MEMBER

- 4 ~.- • 6' -z";

0 123
T I1R AA 1L ' 1 R B 2 L_ 2R C 3
22 2

*e4 5 A 6

O'R A' IL 1 R 2L 2 2'RL --k
TRANSFER MATRICES X1  MAIN MEMBER *:

*Fig. I11 A planar structure sectioned into constituent parts
which make up the transfer matrices X, and X2.

* .. ,. ...... ~ .-. , ..,
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MAIN MEMBER I

t AL AR 2 BL BR 2  CL CR 2
0- 3

A A'3

MAIN MEMBER IL.

Fig. 12 A 3-bay planar structure sectioned into basic periodic
units Qnd half units.
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Veiwt

* A1 B 23

C'

S1

Fig. 13 The 3-bay planar structure loaded by
* sinusoidal shear forces.
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LENGTH OF EACH BAR X1

MANMMBRI
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~MAIN MEMBER 31

Fl;. 14 A tetrahadral truS with repeating periodic units.



-60-

VZi, M13 -81-

-U, T, N M21 , T
to

5 Fin~ 15 Sign convention for the forces and displacements in
a connecting bar of Q tetrahedral truss, expressed
in local coordinates

4P
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MAIN MEMBER

MAIN MEMBER I

S j~XA

MAIN MEMBER n
y

Fig~. 16 A segment of the tetrahedral truss.
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G EL ER H

D ~\L
/\ / -

P I c'
/ L I L
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A xAI"LI__/ ...

FL FR '

TRANSFER TRANSFER TRANSFER TRANSFER

MATRIX MATRIX MATRIX MATRIX
V t  V2  V3  V1

Fig. 17 Sectioning of the segment into constituant parts
comprising 'the transfer mctrices.
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SEGMENT I SEGMENT 2 SEGMENT 3 SEGMENT 4
A ' A ------ --------

O/ V

Fig. 18 The Tetrahedral truss (Fig. 14) sectioned into
four basic segmentS.
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S.

-1/2 I

Fig. 21 ____re posofoce irdtBu

to aI poitv u i implefrea R
to Fig 19
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Fig. 22 Force response at 8 due to a positive square force
pulse excitation at E (Refer to Fig. 19).
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Fig 23 Force response ct B due to triangular Pulse forceexcitt t E (Efer to Fig. 19).
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APPENDIX A

PROPAGATION CONSTANTS AS APPLIED TO

THE ANALYSIS OF WAVE PROPAGATION IN

PERIODIC STRUCTURES

The characteristics cf %ave propagation and vibration in periodic structures are best

understood in terms cf propagating and non-prcpgating wave motions. In general, waves can pro-

pagate in some frequency bands and not in others [2]. In other words, periodic units in periodic

structures behave like band-pass filters, responding very efficiently in certain frequency bands only.

Such a characteristic is cmmen y described by a popagation omstant p. [, 2] which is

described by the nature of the periodic unit and the correspnding excitation frequency. The bar-

mcnic motion at one end of a periodic unit is equal to e" times the motim at the other end from.

which the wave is travelling. A propagation contant )L can be real, imaginary or cmplex, and its

value alway occurs in positive and negative pairs, which correspond to identical but opposite going

waves. The real part of p. is called the attenuation a, and the imaginary part is called the phase

constant (or wave number.) K Purely imaginary propagation contant are -cnown to be associated

Aith ,wawes xhich propagate energy. whereas purely real prcpgation constants belong to waves of

.r energy fow [1]. The frequency bands cf the real part cf pLare caled the propagation zones;

-her frequency bands are al1ed the attcnuation zero. Th number f ssible proagaticn ccn-

stans (ax the rotrrrcidLng w-aves), for a periodic unit at a particular frequency, -s equal to twice

the number of state vectors (or coupling coordinates) between adjacent pariodic units [1]. For

example, for the flexural vibrations of a beam, there are eight propagation constants crresp ding

to the four mupling ecrdinates which are, namely, the transverse displacenent, the angle of rota-

tion of the crtss section, the shear forc and the rnarnent. For a particular vilue of the rcsitive.

nini v.-aes. each as a fu."cdin cf x, and cf the fon 2]

* N-

- ,.,- . . .. . . .
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W,.(x) Aell'd (Al)

I,.I

"°

andl the rtgatihe-gcing waes each as a fuinctim c x ,are of the form [2]-"

Q "S

w -(x) = ,Be€'('")¢ (A2)

* W, re A,, and B, are aonstants andi W represent3 thI wae l:rametm" cf interest (for emrpie,

stres v ave in a rzicdic structure).

,-'

S. . . . . .-. 5,.-°.p
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APPENDIX B

TRANSFER MATRICES FOR LONGITUDINAL VIBRATION

IN AN ELASTIC ROD WITH DISTRIBUTED MASS 1.

In this appendix, the transfer matrices (from left to right and from right to left) for

lcngitudinal vibration in an elastic rod with distributed mass are derived using the classical wave

equation for longitudinal vibration in an elastic rod.
'a

* Fig. B1 shows an elastic rod Nith distributed mass together with the sign convention

adopted fr the forces and the displacements. The rod has modulus of elasticity E, cross-sectional

area A, mass density p and length e. Furthermore, N(x ,r) represents the internal axial force and
"Vd

u (xt) represents the lcngitudinal displacement in the rod.

Consider a small element of the rod as shown in Fig. 132. Lsing the momentum princi.

8N azu(x r)
OX 0t2z'''

By the definitions of stress and strain,

N = aA,

ard O = EE

which 2ive

aON AE a u (x ,t) (1X'
Ox Ox2

Equating eqns. (B1) and (12), the vae equation is given as

p.2

p °

. .-.
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a2 u (x ,t) E u(xt)3

al2  P ax2  -"

Now let u (x ,t) u (x)sin(at +%) where w is the circular frequency ci vibration and "

is the displacement. Substituting this assumed form into eqn. (B3) gives iVV

-,sin(t )((B4)dx 2  E

Canceling the terrm -- sin(u +) from eqn. (B4) gives

d + - (x) =0 (B5)
dx2  E

Eqn. (B5) has a solution f the farm

u(x) =Clsn( + C 2 s (0 (B06)-'-

where e =il ,, E and wrere C1 and C 2 are cmtant.

TRANSFER MATRIX FROM LEFt TO RIGHT

To obtain the f atrix from left to right for a rod, adopt the left end of the rod in

Fig. BI as the origin for the x axis. Applying the boundary conitions to eqn. (B6), . -

U ,.x = a X

u ~u1 ,atxe

where uL ar uw are known quantities and solving for the constants in eqn. (B6),

URx - , AL OS@ (7sine sin(0-) + U'CS(O

Usi, eqn. :" cr N AE : cang the resulhg boundary mlucs as,
'.x

,. -...
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N =NL ,atx =0

and N = NR ,at x = ,

eqn. (B) givs"

Suq =cos uL + e sin0 NL (B8)EA O '6

6EANR=- sin u. cos NB (B9)

Writing eqr8. (B8) and (B9) in matrix form,

f sine0
Cos 9 EA 8B

= (B10)
UAR sinO cose {UL

Aiev--. L pA and the subscripts R and L dente the right and left ends of the bar, respctively.

Thus, from eqn. (BIO), the transfer matrix T from left to right is:

e sin 0
Co e EA 6

T =(B11)
sin cos e.

TR -kNSFER MATR LX FROM RIG HT TO LE FT

To obtain t transfe matrix from right to left f r a rod, adopt the right ed o the rod.-

in Fig. B1 as the origin. Then, applying the boundary conditions to eqn. (B6),

u =u ,atx =0

and u L ,at x =

here uq and uL &-e crn quantifes ad solving for the corstants Ln en. (B6),

,0=-
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u(x) U Cs e-uL sin(8 X C (a (B12)D~~~i = 0 7 ) + ' : ( uR ez1,.?

Using eqn. (M2) and callng the boundary value as,

N =, ,atx =0

andN =N ,at x =-,

eqn. (312) gives

U1k Cos U - sin e8N, (B13):

EA 88
NL A_ sin 0 u + cos 0 Nr (B14)

Writing eqrs. (B13) and (314) in matrix form,

t sin 8
u a~s 6EA 8 f

= J(B15)

From eqn. (31I5), the transfer matrix T- from right to left is

f sin 8
ecs 0 EA .

T -  = B 1 6 )

sin . as -

* . - "' - *- "- . . . . . . . - - - _ - "
... . . . - .. ...- _ s. .a . - s. 1. " ; - - -,-:, , '.' .. -" "'" -. . *.'- .. ",-'-
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E, A~p

NL N-"X LR, UR
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N dpAdx N +dN

Fig. B2 Free-body diagram of an element of the rod.

0z
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APPENDIX C

TRANSFER MATRIX FOR LONGITUDINAL VIBRATION iN AN ELASTIC ROD

WITH DISTRIBUTED MASS AND DAMPING

In this appendix, the transfer matrix frcm left to right for lcngitudinal vibration in an

elastic rod with distributed mass and damping is derived using the w"e equatico. The derivation c

the transfer matrix from right to left in an elastic rod with distributed mass and damping follows a

similar apprcach and therefore is iot discussed.

Fig. Cl shows an elastic rod with distributed mass and damping together with the sign

convention adopted fcr the forces and the displacments. The rod has modulus ci elasticity E,

material damping c, mass density p, crcss-sectional area A and length e. Furthermre, N(x ,t)

reprsents the internal axial force in the rod and] u (x ,r) represents the longitudinal displacement in

the rod.

Csider a small element d the rod as shown in Fig. C2. Using the mcmcentum prin .

ple,

pA (CI)

N - assume that the rod can be modeled as a simple Vcigt material [11] 'xith elastic modulus E

and damping constant c such that the stress-strain relation is given by

a E- (C2)-dt "

By the iificr c stress arxi strain,

.,0.

*~.. .. - _
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since N = cA

u = .3 (x ,t)
nax

aN =A[ ua'(x.t) a (a'u(x ,:) ]
ax [ a "2 at ax ]

(c3)

Equating ens. (Cl) and (C3) and rearranging,

*at-2: 1 X ____ a _ (aU2(X t) (CA
at: p ax2  at ax2  (C4)

Now assume that

u (x ,t) =u (x)e'" (CS)

Xter substituting eqn. (C5) into eqn. (C4) and cancelling the el- terms, ..

:{t + rP ,,(X) =0 (CS)
ax 2  (E +ic) C)

Eqn. (C6) is the wave equation for longitudinal vibration in an elastic rod Aith distri-

bu:ed mass and damping. It has a solution of the form.

0l

0.,.
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X X

u(x) =c sin (ef-) +c o (- (C7) sin(C

where 0 fW
w = e= 'VE+ic;.-.

0and there Cand C,-are constants.

Applying the boundary conditicm,

U =U L ,atx =0

and u -uR at x

'wirre UL and u are known quantities and calling the axial forces at the left end and the right end

of Ut rod NL and NR, respctively, from eqn. (C7),

e sin 0
=R Co eL + -i-- NL (C-8)

and NR=- EAe sinuL +s&V (09)e (9

Writing eqrs. (CS) and (C9) in matrix form,

e sine

wIte A. = pA.

0 l~

0 %

~ ~...............................- . - . ,- - - "



-80-

Thec transfer matrix T required is thus

f sin -"
EA (i "'

The relationship between the damping astant c and the attenuatic parameter x has

been investigated in [12) and is given by

= tan (2 tan' -) (C12)
O Ca.)-

0

0
"0'

1'.

6.

0

0
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0

p1AC, E
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*

U _______________

*

0

0

*
Fig. Cl An elastic rod with distributed mass and damping.

0
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Ndm pd-4.N~dN

*~ dx

Fig. C2 Free-body diagram of an element of the rod.
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APPENDIX D

TRANSFER MATRIX FOR FLEXURAL VIBRATION IN AN

ELASTIC BAR INCLUDING THE EFFECT OF SHEAR DEFLECTION

AND ROTARY INERTIA

The transfer matrix for xumual vibration in an elastic bar including the effect of shear

defection and rotary inertia is derived in this appendix. Fig. D1 shows an elastic bar with

distributed mass and the sign convention chosen. The bar has modulus of elasticity E, shear

mnodus G, seond moment f area inertia about the y ais J, mass per unit length and radius of

equation i. In addition, w denotes the lateral displacement, , denotes the rotation ot the crcss-

sectional area about the y axis and M and V represent the moment and the shear force,

respectively.

Consider first an element of the bar as shown in Fig. D2, ,hich gives

v =GA, ( + (DI)

,Abre GAs =GA/K, is the shear stiffnss and K, is the form factor hich depends on the shape f

tiE c-oss-secticnal area.

Tr onstinutive beding relaticn for a bar is

M E E (D2"

dx n

Now onsider Fig. D3, -hich shovs a frze-body diagram of an element of the bar.

Equilibrium consideration give the following equations:

0 .

'N,
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a_.M_ v - ildql (D3) !

-.

_,-p.ow, 7 (NS)-

NDifferentiating eqn. ( ) with respect to x, using the relatio hip o eqn. (32) and ten nto..

dM -_

substituting into eqn. (N4), ..

= - L~W (J-°

d -M- + M + paw = 0 (D6) :

dx ".

Eliminating M in eq. (D5) and (D6),.

dx
2  

GA E 2 f

where : C~=a GA,"2['

EJ

Nw assume a displacement w such that

stue C is a cnstant. Substituting the assumed form for displacement into eqn. (F-),), canceing

,Jrx term -Ce" '' fr-cm the eq uaticn, the c.haracterisIX equaSen is obtained as I
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*h ~ roctsof eqn. (D8) are±: Xad jX2 where

w.ith )j a + a 4

4~X2 3' -ar

Therefore, the solution is

w =CextI +Ie-xh/C +E~e')"e +Cle~' (D9)

where CT1 , C2, C3 andi C4 are cristants.Eqn. (D9) can be witten in the form

w = Cjcch(X1 .- ) 4.C 2sinhX1 -)

+ C3CCS(k L)+ C4sin(X2 X(D1O)

wtrreC, =C 1 +C 2

C2  IC1 - C2  V

6C 3 C 3 +C 4

Examination of eqns. (Di) and (D1O) shos that V andi w are of the sam~e form.

Therefore, let
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V A ccrh(Xj L + A 2Sinh~q le + *Tr(vl- Ai

* (Dl 1) '

Using eqns. (DI), (DIO) andl (D11),

04E

+ (c-XI) [A 3ccr,(X2 - + A4sin(X2  (Dl 2)

Using eqns. (M)), (1)10) and (D11),

m ±2- 1+-X) +[Alsinlh(\ .- ) +A2ccsh( .- )

Writing eqrm. (1)10) to (1)13) in matrix fcrm,

-sinh(>X, -) ohX
; r Ej e P sh(X e
t(a4X2) (oX)snXL

13'EJ e~s(X- f3E \e

* xsh (\ j sinh (k -L-)
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t3  f- io x kX CoxkL
*'EJ X( ) -EJ f() T)
_2_______ f 2 (C,-X2) ri

COS(J sin ()q A
P'EJ 13EJA

_2_(__--X_ ) ex2(o--1.) . A 3  (D14)

* aOS(X2L-) sin(q .- )

ImFsinm g the boundary vue,"

W wL ;=o xL ,at x =0

ww 1 ;wq =* ,atx=e,

wtrre w,, wR, t, , are known quantities. Calling the shar forces and rrents at the right end

and the left end c the beamas V and MR,VL and ML, respectivly, eliminating the contants A,,

A2, A3, and A4, the transfer matrix is obtained which relates the state -ectcrs at x =0 and x =f

as

--- (Ci-T)C31

C3 CO - rC2

= B EJ EJ Cc3

)R PEJ J3E
C2

6m

0,I''' ''I - L .Z.''',) ' - '" "- ''. ' . '"''- ''" "'. '- "" ' " "•" - -" " ' ' .'•" . " - " - ' .
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VC2 e3

I-C, (13'G-SC3EJ c2  E

c -c) 2 I -wJc3

(Dl 5)

w'ith A=

co A(X2'ccshX1, + X4ccsXz)

cl =A(- coh X, + -- sin>2 )

c= A(ccshX, -ok

0 sik XsinA)

Frciii Equation (D15), the transfer matrix T required is thus

T 3 =

WEJE

V02 E['l +^C

0f
*rE 13* .

* ~ ~ ~ e C** * * * - . . . . . . . . . . .



e ~ ~ (C I -C)c e

EJ EJ

CO- TC2  e[C1  (0?-r)C3]

eC3

(D16).4
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Fig. D 1 An elastic bar with distributed mass (Timoshenko
beam model).
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0 E djV+dV

0 INERTIA FORCE z j&w2 w dx
INERTIA COUPLE= IL 2 wa2 '#dx

Fig. 0 3 Free body diagram of an element of the
Timoshenko beam model.
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APPENDIX E

TRANSFER MATRIX FOR LONGITUDINAL AND FLEXURAL VIBRATION IN

AN ELASTIC BAR WITH DISTRIBUTED MASS AND ROTARY INERTIA

The transfer matrix for longitudinal and flural vibration in an elastic bar with distri.

buted mass and rotary inertia is derived in this appendix. Fig. El sham an elastic bar with the sign

convention adopted for the forces and displacements in the bar. Thr bar has modulus of elasticity

E, shear modulus G, second moment Cf area inertia about the y axis J, radius of gyration about the

* y axis i, cross-secticnal area A and length e. Furthermore, the bar has displacement comxents

which cmist of transverse displacment w, longitudinal displacement u, rotation ci the bar's acss-

section € and force ampoents which include the shear force V, axial force N and moment M.

If the transverse deflecticns are assumed small (relative to the bar cros-sctimn), the

longitudinal and fexural vibrations (or waves) are not coupled. The transfer matrix can then be

obtained by directly asse biing the transfer matrix for longitudinal vibration with the transfer

matrix for flexural vibration.

Since for longitudinal vibration in an elastic bar with distributed mass,

Co e sin 0
EAG U

ir =.

=Co (El)-"

{NwIN sine l

and for flexural vibration of an elastic bar vith distributed mass and rotary inertia,

I

..... .... ..... .... . .



* -94-

Co -- C2  e[cl-(a4-)C3]

=eC 3  
Co0 1C 2

* e2 C2 2

e2C2  e3

EJ EJ '
c. -ic 2  fc 1 -(a+)c 3 1

I (El C CO--a2 1AL

II

(E2

Us~blng ens (I) m (M)

. . . . . . . . .
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u

cs00 0
-W0 COT2 4cl-(O-Ir)C3 ]

M 0 C2 - LJ[-Tc1s(O4+12) C21

0 8'EJ (c -W) f'EJe3  e2

N siR 0 0

0 0 usn
EA 0

f3  f
-[-OC 1 +pr4O)C3 1 I-l('V)3 0 __

P'EJ - EJ 1

ee2

c0-rc 2  e[Cl-(a+T)C3] 0

e3 CO'C 0

0 0 ccs

,NIL

(E-3)
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wtvre 6=w%4

A

C (X a X)2

C, A( sih\ ipj

sinh~ )q sinlk

GA,

EJ

EJ

* Thus, the traxmter matrix T specified is
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Cos0

0 c 0 fc-rac

0 0E

s0 n 0 sin

2 0

E'E

-TC2~ 3  eC-jy '7C 3) 0

9-C CQ'z

0 0Co

(E4)

Il
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ML E A GMRL*

NL--a'

Fig. El1 An elastic bar with distributed mass and rotary
inertia, undergoing both longitudinal and flexural
deformation.
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APPENDIX F

FREQUENCY RESPONSE AND IMPULSE RESPONSE FUNCTIONS FOR

LONGITUDINAL VIBRATION IN AN ELASTIC ROD

Figure F1 shows the elastic rod to b used in this Appendix. Tie rod has mxdulus d

elasticity E, mass density p and cross-secticnl area A. N dentes tle axial force and u denotes the

longitudinal displacement in the rod. For demonstration purposes, the rod is damped at one end-

and the other end is left free. The rod is loaded at Section E with a sinusoidal axial foce of.

magnitude N.. FurthermoTe, the rod is assumed to consist of six identical rod segments, each "'

length f. In this Appendix, the frequency rspose functios at setor A, B, C, D, E and F will

be obtaind using transfer matries. After the frequency response fhictions are generated, the

impulse response functions can be obtained using inverse Fourier transforms. In particular, the

impulse response functim is obtained for section B.

FREQUENCY RESPONSE FUNCTIONS .'

For longitudinal vibration in an elastic rod, the state vector onsists o the longitudinal

displacement u and the internal force N. Thus,

" = ( Il)

Al bundary A, since the displacement is defnd (that is, u =0),

001

0,°.-.
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At bo dxlary G, since the force is defined (that is, N = 0),

Zo = oJ3) (M)

The excitation is given by Le'" whe L is an input vector whse element correspond to

those in the state vector being considered. Th'J, in geral,

L P} (F4)

Ahere D is the displacement excitation and P is the force excitation. In the present case, since te

axial force at E is the excitation,

00 Le ={ e'" (F5) ..- ,

For longitudinal vibration in an elastic rod, the transfer matrix relates the state vectors

at the to ends cf a rod segment as, from left to right,

Eoe A 6j ~(
I~v1 I sinO Cos@ Y TNJ)

and from right to left,

0'

0'

............................................,.-....,,...

.... .... .... .... ... .... .... .... ..... '%



.. :.,

I sinO 1-

* { L = a EA > (F7)[ sinO se F7

Let the transfer matrices given in eqn. (F6) and (F) be T (f) and T (e), respectively,

where the f in parentheses signifies that the transfer matrices are for a rod of finite length f.

Notice that since there is no impedance mismatch betwen the individual sections and the rod can

be considered as me continuous mnber, multiplying T (f) n times is equivalent to replacing I in T

by ne, or

TR (e) T (n e) (FS)

For the state vector at G,

{ -} - T ()T (e)T (e) ()T (f)T (e) + T (e)T() .

*r, using eqn. (FS), eqn. (F9) can be written as

{ T (6e) { rT(2t) (Flo)
Go t to 1,f0I

Now let A = T(6e) where A is a 2Q. matrix Aith e-lements an,a12 ,a.., and a. and let

B = T(2f) where B is a 2)C matrix with elements b1l, b12, b2l and bm. Eqn. (Flo) can be written

as

.e - n l • •.• . a
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',,

f + LI; I= 11 a1 1 ,.0 L21 aulI, , + ,, b:l •'I (F 1)

Considering the force vectors only, from eqn. (Fll),

0 =a2NA +b2No

fron wtfich

NA b (F12)

But since! 0 = fEN/e/" and n8 n..

Bu ~f~6E E

examination of eqn. (F6) giv

a= cos6O (Fl3)

and b = cos28 (Fl4)

Subtituting eqns. (F13) and (F14) into eqn. (F12),

,V, = ce N, (F15) "-
IA cos66

Since by definition H(w) resaponse
excztati on'

0.

0 ',

77
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jvH( = O2e (F 16)
a~6e

wtrre the superscript E denotes the exitation ccation, the subscript A denotes the response Iocatic

and the subscript N denotes a force response. At",

f N N (Fl7)

I.t c 1 , c.,, c:. c:2be eler n of the 2 >Q matrix T(f) such that en. (P17) bmes

F21 CJ2 fo1
*VfN 8  L[c c (I

or {V} N,[CJ (FI S)

Using eqns. (F15) and (P18),

No (F. 9)

Zimratic cf ".n. (T61 pes

C2 sin@ (F".-9EA "

S= = c:s. (Cos

Cl 8

..S.

IS>
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coas26 EA 0

e sine]

cos6@ No cose

CxS2 
-EA

( = A s6e (F22).

Notic that when there is no subscript to the left of H(w), the frequency response function is a

vector wtiose top element represents the displacement respose and wfxse bottom eement represents

the force response.

Similarly, for station C,

2 e~ sin-'8
S= OS29 IEA 20 "

Ls6o cos28 (F23)

for station D,

1 ~s9 EAse 30 .

an aKfcr sta~icEL N-hreEL isthe pint ust to t.1-left cfE,

[4e SL-ie
* ~~~w) c~9 C. 4 3*xc! %-

-'L

....................................*,..*
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Now the frequeny response functions at G, F and ER are obtained where ER is the

xint just to the right of E. To avoid crossing the disontinuiry due to the excitation at E, transfer

matrices from right to left are used.

Using Equatim (P), for the state vector at A,

= (-T-(4e) { (F26)

The irinus sign is due to the sign conention choen. This is because transfer rnatrices from right to

left is used. Now let D =T-'(6e) with elements dt1 , d2, d21 , and d2 l and E =T-(4e) with

elerments e,, e:, e21 and e.. Equatim (26) can be rewritten as

1-

0o'~ d1 , d1 _ e e12  0 .

=d d, 0 - (1=N7)

Carsidering only the displacenent vectcr at A,

0 d, 1 uG -ee2 .V- "

or "-

Fron eqn. (F7)

e l A 4 ( F 9 ) " -
-EA 4e

* = axs69 (F0)
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Thus,

4f sin140

*H(''(w) _ EA 49 (F31)

%ttre the subscript u denotes dispacernein response. At station F,

=T-'(e toY0 (F32)

* Lt f':1 4 fl2,f~ and f= be the elern~ts ofTI~)

* {N} UC [; (P33)

U~sing eqns. (F28), (F29), (P30) and (F33 ),

sin48

tv, W E.A cos68 fv

= - sL4 fj
or H(f(') E 412

* SLncc eqn. (F7) gi~ts

7'7,
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*eqn. (F34) cn be witten as

sir46

f(w) = 4 , (35)

Similarly, for station ER v~trre Eft is just to the right of point E,

sin40

n. In the present cse, sinc the frequecy response functons are quite simple (from a

matheataril point of view), the impulse respne functions can be obtained in closed formn by

sirmlv ta~&'.g * In-er Fouir trans:7-n ci the freqeny respse fuznctions.

First cc-sider tl'e impul1se ftocz mresnse ncioins at pint B. Frci- Equaticn (PF.2),

§c he crce respo~nse,

HA(w) cos= - c os) (37)

-s66..

Ahe- the Sucript N denotes tlA f response. Using F36 atic-"hip

.0il

........................ O. S "" "
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e 's@ +emsnO -- 2

Eqtntion (F37) can b rewritten as
%'.

yH () 29e -129 ele +e--qe 2 -2H() = l2 6e - e --t 6

(F38)

Rearranging eqn. (F38),

.HE(w) = e' 4e~3 ~e e
2 e1" +e

" 6
e r

(F39)

Mlultiplying eqn. (F1=39) by 6"0 6- and aragn te
- . e 6 -e _ aix arrangngts, 

H EW) (e" e )(e e'3 e' e
2 e. -e

(F40)

Fac-oring the tcmrn e" ' fLc eqn. (F40)

Hfrw =b -.,6)(e, e-34 ego, -'

a Hk) -(e ' - )( -e -e

(F41)

e-":0

.ncL,~~~ :4, •c-
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1( 69 -6) (e'3 +ef' +el +e-')d
NH ,w) e 2@(e -2

*6 (F42)

Rearranging terms in eqn. (F42)

1.3 +: eli 170 e1214 -

NHA(w) = (e +19 +e

--e'34- e -e' 7 - e)' 2)  e (P43)

Sic Q =-oHw~'d40]a~ e"ed =~-) de~a-)i

° -0

I (e"5@ e j 174 + e"94 + eJ214-

k -0

..fOf - e,15- e, Of e J")e t24ae  (F43) ,.

• Since h(t) = H(.)e'"dw [10], and 2" e''e'"dw 8 (t.-Tr) %,tere b(t -- ) is .,

ti DL'ac delta funtcn, also keeping in mind that

CE

integration of en. (T43) term by term gives

0
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h ~t(34.24k)eV- 2-] - qt- (5+s24k)e%/ 2-]*2 k -0 E E

qt - (7+424k)e\/-P- - 8t- (9+24k)e1fJ

+*q - (15 2kA)e\/l4] +-It - (17+24k)/4]

+ -(19+24k)e\/I*] -s- - (21+.24k)V4/']}

E0

(F44) -
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APPENDIX G

0
wm

TRANSFER MATRICES FOR WAVE PROPAGATION IN A 3-BAY

PLANAR LATTICE STRUCTURE

Fig. G1 shows the 3-bay planar lattice structure to be used in this apendix. The planar

structure is assumed to consist c identical elastic bars with distributed mass, each of length t.

Each bar has modulus of elasticity E, mass density p, shear modulus G; cross-sectinal area A,

second mcment of area inertia about the y axis J and radius of gyration about the y axis i. Th.

crcss-secticnal dimension of each bar is assumed to be small compared to the length, and the

Timoshenko beam midel is adopted. Each bar has transverse displacement w, ]ngitudinal displace-

meit u, angle of rotation of the crass-section q, axial force N, shear force V and mtrnent M. Mr

sign convention for the displacements and forces in a comnecting bar as shown in Fig. G2.

In analyzing the wave propagation and vibration of the planar structure shon in Fig.

G1, two transfer matrices are involved. The first transfer matrix X, invlves the transfer of state

*vctcs in two bars, each of length t in main members I and II. For example, members 12 and 12'

together are represented by such a matrix. The second transfer matrix X2 involves the transfer of

state vectcts across the junctios. In a periodic unit, the members that join main members I and II

constirute such a transfer matrix. For eumple, member 11' results in a transfer matrix X2. Fig.

G3 shews a 3-bay planar structure %tich has been sectioned into its constitutive parts responsible

for transfer matrices X, and X 2. The subscripts R and L are used to denote pcL-nts, which are just

to the right and points which are just to the left, respectively, of junctions ,hich cornect main

members I and 11.

o-
0 •.-.

S%
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TIRANSFER N ATRLX X,

Transfer matrix X, can be obtained by simply assembling the tansfer matrices for

fleural and longitudinal vibrations in straight bars such that both the state w'tors in main

members I and fi are =asidcred. The transfer matrix for longitudinal and flexural vibratims in

straight bars is given as

Cose 0 0
0 CO-'x 2  f[ci-(a+r)c3 ]

0 e3 Co-rc2

-.- o EJ

0 fryJ 1'EJC

0o

S0 sine
EA 0

f2 EjE L Z [-C, +('O')c3] 0
J-E- f :0 .

co-'ic 2  e[cI-(o-+'r)c3] 0

C3 CO--0r 0

0 0 c~s .

arr,espcnding to a state vector

*P

"-. -; _,' €- _€~~~~... ........ ,'. .. -'.. ... .-.. .... - .- . ..., ,", .-. .. -'..-_. . . .•



d={w

andW

axxi where O wN7
SE

A, 2

co A A(X)acsh X, + x4ccs )

+ L

cl A snh X, inh X

GA,,

Se

EJ



PartitioriNg the trarsfer matrix gie into fouir 3X3 subrnatrices CI,C 2, C3, ai C,

such that

=l a~ 0 C-i 2 f[C1 -(O-+-T)C 3]

o fI C0 1TC2

e 3

0 0
ET0

C 3  Cl-T3 =2 00

c0.2 e~1 (-sTJ 0 C

C3 0 c0- RE 0C-3 2C

0 0

fl ~ ~ COIC fol-(a--ing 0eaimcn ir

13'

C493 c-c

0 X

..................... n e wrtte
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- [C ] fdIL (i)

1PI C3 C4  P ILf l C2  d, (G2)

where the subscripts I and 11 stand for member numbers.

Eqns. (01) and (02) can be cined to form

d, C 0 0 c2Jd I,)
Jd,,I = C, C2  0 l,
/Ip1  C3 C4  0 i11, (G3)

SC~3  0 0 C4 yL

Noice that eqn. (G3) relates the state vectors at the right end to that d the left end d

a section of a periodic unit which is represented by transfer matrix X1.

Frcm eqn. (G3),

[CI 0 0 C21
x, = (C C 01 (04)

[C3 0 0 C4]

TRANSFM MATRIX X2

Frcm the previous section,

o'

Ccnsider an I-juxcticn as shown in Fig. CA. The foces and displacemnents f rreber 11' (Fig. CA)

. - ~.*.* *..* *. . . -,
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are shown in Fig. G5. For membe 11',

0J

b~J7[~c 4 I(G5)
wiere d and are displacement and force vector in the local 1' coordimte.

In crossing ove from left to right of juntions I and V', the displacements are unchanged

but the bar 11' introduces discmtinuities in the forces and moments. Assuming the displacements at

the junctions are known, these forces may be computed frcm the elastic, gexnetric and mass proper-

ties o bar 11'.

Fig. G6 and G7 show the directional relationships between local and global state vctcrs

in juntic I and 1', respectively. By inspection of Fig. G6,

0 1 0.

cr - 0 0 -W (G6)

0 0 1".

and j =--N, ;A 1 =M 1 ;rr -'V S,.

r 0 0 -1 (G7)

001~

0 10

Similarly, impection ct Fig. G7 gives
1)i

- .

0. . " t. :'-'-"-"- . . . . . -":% . .-" . .-"---" .'. '... .-". . , - - ._- -'- . -" .-'-'-". - .-'--.>;-". .



and. -:N' -v 0~ 0 -W (G)' ;

(z) 0 [0 1.ff

and V.=-NI. ;Ail. =-Mi. ;N1.I =Vi.

1-1 0Ol Af(G9)

Eqrs. (G6) through (G9) cn bewitten as

d=Gld1  (GlO)

pi =G-2 P (Gl1)

di, =G 3dj. (G12)

where
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0 101 O

Gz 0 0 1
11 01 00 1

G3 0

10 101

0- 0 1G4 =[ 11

Fran eqn. (G5),

dI = C dI + c=Dvl (G1 4) -.-

A% =c3da1 +c4P1' (G15)

Multiplying eqn. (G14) by C-"' and rearranging,

Trarsforrning the local oordir ates to the gobal ooardirates in the main members, using eqns.

(GIO) to (G13),

S ,%

0u
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pi =G2 fi1

0%
c P, =G 2C 4Cj 1 GId.

+-G2(C3 -C 4Cij'C)Gd,1  (GI 7)

and Pi' =G 4P1 "

cr p1' =G4C 1 G~d, -G 4C'CG 3d, (G18)

Writing eqns. (G17) and (G18) in matrix fcrm,

0 A [G2C4C2'Gl G2(C3 -C 4Ci'C1 )G3 ]d,)
I, J = [ G4Cc -G4C 1 C IG3  j,J (G9)

Now examine Fig. G8, which shows the frces at jucticm 1. Fr= equilibrium con-

sideratons,

V , V , + V . (G20) "2

R- L

%ttr the subscripts L and R stand fa the eft and right end ixints cf 1. Similarly, fI Ju ntiai 1',

NI, Mi. NJ,".

IN I IL 1I

Fr= eons. (G0 0 and (G21),

• .

............................ -. .. 44 - 4 4.. ... .... ... ...
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p.,=+ (G22)" "

Since -.".

{ 0 0 00 di,
0010 p~.(G23)

l'}L 0 0 0 0 ( "1.
000 1 PI }L

where I is the identity matrix, and fran eqn. (G19),

{ } J- --
00

-GC'CC 0 Pi'
'g G4ClGj -G4C2IC1C 0 0 Pi, (024)

2 CCjG~G 2 C2 -C4 'G1)G3 0 0 PiLLG2C4C IG, G2(C21-CIC2ZIG L;~"

- L.

As mentioned previously, displacemnents are continuous in crossing uncticns I and 1', thus,

1 0 0 0 (d,
dj, = 0 00 P' (Gi5)

0 0 0 0j PI50000 ()

.-..............- -:,-,... ..- ... .. ......': -'-..-,_- :2'.'2. .. ".-........,........ ... .. ,.. .. . , .-.
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d,, 0~ 0 0o d,

* d~j 0 1 0 0 dj.

P, GC 2'G I -G4C2'CIC3  1 ilL (0-6)
A, ~GC4Ci'G, G2(C2,-C 4C-'G,)G3 0 1 P1

Keeptng in mind that 1 corresponds to a point in member I ard 1' nrresponds to a point

in member II, eqn. (G26) can be rewritten as

jd 0 I 00 d,

P, GXIGI GC'C 1 C3  1 0 (G27)

AP1 R GC 4Cf'G 1 G2 (C21-C 4Ct'G1 )G3 0 1 IRJ

Notice that eqn. (G27) relates the state -ctors (on main rmbers I and II) ctn de right

end to the state vectors en the left end of a section of a periodic tuit which is rep-resented by

tramfer matrix X2.

From eqn. (G27),

0 1 0 0

X = GC_-'G 2C' CIC 3  1 0 (S)

G.C4 C.'G: G2(C ."C,C.'GKG 3 0 1I

0



-123-

MEMBER I

0 A I B 2 C 3

1 4 5

01 A' I1 8' 2' C' 31

MEMBER II

Fig. GI A 3-bay planar structure.

. 7.
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/-a

ML,-L MR"*R

NL-" L
* (~zn 1  N R U )

VL 7WLVR, WR

0R

Ip

Fig. G2 Sign convention for forces and displacements in
a connecting bar.

0 
'. a



* -125-

TRANSFER MATRICES X2

*OR A 1 1R B 2L 2R C 3 L)

10 o~ A L 1 R L' R L~C

TRANSFER MATRICES X,

*Fig. G3 A planar structure sectioned into constitutive
parts which make up the transfer matrices
X, and X2.
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MAIN
MEMBERI

*A

AlMAIN 
I

MEMBERfl

Fig. G4 Diagram of an I-junction.
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*..

MAIN MEMBER_ NIu'

Sw4
1' 1

V, u'
A A
N1, u1

COUPLING
MEMBER

Fig. G6 Directional relations between global and
local state vectors at location i.

0%

_ ~ ~ ~ .- 2, 2 2 . ,.D*
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A 1 A

A W AA

MAIN MEMBER I Ni U1 V

Fig. G7 Dirsctional relatiJons between global and
local state vectors at location 1".

0d
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VIL 
i.-{t~MiL MAINMR

MEMBERI

* NIL N1  MI tI L4V.

N1

* 4 v1

COUPLING
* MEMBER

Fig. GS Forces at location 1.
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APPENDIX H

FREQUENCY RESPONSE FUNCTIONS FOR

A 3-BAY PLANAR LATTICE STRUCTURE

* The frequency response fumtions for specific locatiom in a planar structure an be

obtained through the use f transfer matrices.

Consider the 3-bay planar structure shown in Fig. H. For demnstration purposes, the

structure is loaded at the mid points betwen mnbers, 23 and 2'3' with sinusoidal shear forces. It

will be shown that the frequercy response functions for locatiom A,A', B, B', 4,5 and 6 can be

obtairrd. For simplicty, assume that the cross-sectional dimensios in the connecting bars are

small compared to the lengths and that the structure onsists of identical rod elements throughout.

The ecitation is given by Le" where L is an input vector whose elements correspcnd to

I-Dse in the state vector being considered. In cther wcds,

D,
D11

L 1 (H)

%kfre D is the displactlmnt excitation ,ectcr ,ich includes the logitudinal displacement u, lateral

_ w and ,taticn ot the bar rcss-secicnal area ,, and P is the foce exctatica vec:cr

%xhich includes ,he mcment M, sfrear form V ard axdal fcrce N. T& subscip I and II ued L

eqn. (HI) stand for th entire uper and lower member numbers. In the present case, since +he

shear forces are the only excitations,

..-'...'..-'~~~~~~~..... ...............-.-.......... ....-....... ..- .. .... .- .. ..- .- . . .. . . . - . . . .
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0

0 *

0

L e" = 0 e"(H-2) .

0
_V
0

Let

and

I'".,.

0 =

* (0]

L °-

0

~L J

6L

%Nre0 is anulv mtcr d dimemim I

Sic there am no applied fces along the 0-0' and 3-3' ""undari, at 0-0'

0
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(di

lol

)0-0'

and at 3-3'

di:l
)'11

Now let Xt be the transfer matrix crrespcnding to two bar elements of length f in

members I and II, X" be the transfer matrix corresponding to two bar elements ai length /2 in

members I and H", and X2 be the transfer matrix fcr the %'utical mbemrs which conntct main

members I and II. For the state vector at section 3-3', going from left to right along the structure,

0r =~x~~x~~x1/2J (H4)0 d111Xy2I2XX 0 +X I L2oI

L.t K =X.XX.XX 2 X:X be a 12x12 rnatrix %kith eleren c 3x3 submatrices %iere each

suL'Tr:rix is dencted bv k,, (i = 12.3,4 and j = 12.3.4) and ',t B =X 2X :: be a 12.12 inat i,

Nl~h 33 sLbMatrCis b,j. Then romd-ring cydy the Ioad wc:crs in 3-3', from en. (H4),

£ o k 3 k 3 2 ( d i b 3 b 4 I ,
1113-3' = ,kk42  dd110-. b3b L,

. o ° - - " . ° ° - , . .. , . - a .! i
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fdi 1 k3jk32 1 b33b34 1L2

* ~I'd,, J0.0, ~ k~ik, 2 J b43b' ]tLjI~C-c.(1

At staticn A -A',

P1  1Xi"X2 0o
P2 0~

A -A' /0-0,

Let B' =Xl'
2 X 2 %,-'i elements 303 submatrices b1 , then

* d, b, 1b 2J~ b21b (d,~

itI b~jb Id "JO -4. (H-6)

(P J A-A' 4~b2

* Su~stirutig eqn. (1-15) into eqn. (H-6),

I d, b;1 bL

1d11  b~j b k3lk32 b33 b34L

IPuI b~j b k 41 k 42  [bob4 {.Lj(-7

A b~j b; 2
.1-A' I C

Sini--H'w) is 'o response fromeqn.(hi7),
6 excitton

b., b. 2

Hc -:(w) b~1  b k 31k33  b33b34
A -A~(w -~ b k4 lk' 2  b43 b"

b., b12

wthre subscrir, in H(w) stamis for the -rnse location and the supescript stands fcr the

xitaticn ;craicn. Secticnig eqn. (n-S).
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-b;1 b 1k3  k, 1 3b3 b34

v tre the single subscript mow denotes a specific poin in the structure.

Similary, m

Hc %H~<'(w) = j b;2 jk 41 k42 ]j [b43 b"I 111

and

H '- '(w) =-[b;, b, [k3 . k, [ bD bI (II 0)

* H~7c(w [t; b ilk41 k42 bA43 b441-12

(HI.

wtrre b,' are 3x3 submatrices of B" X," X IX 2

To ctain the frequency respone functions for statirs 4, 5 and 6, transformaticn-

matrics are utilized. Fist cnsider the forces at ju 'ion 1 as shown in Fig. 1I-. From equilibrium

co nid e ra ions , , ''

1 = v - v} (I1-3)

Similarly, for junction 1',

..1
* - 1
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I V J (1114)

,-crr the subscripts R and L stand for right and left, rspectiveJv, f points I and 1'. Eqn. (113)

and (1-14) can be combinedas

{Pili {Pi}R {P}L(115

The state vectors to the left and right o junctions 1 and 1' are related by the transfer mrix X2

such that

d 1 0 00 d,

d, 0 1 00 d,

GC 2-C
1 GI -GCZ'C1 G3  1 0 P (16)

J N GCC-tGj G,(C3.-C4C2 Ct)G30  .0"L

from %fich

I GC2GI -G 4C2'CIG 3  1 0 d

P GCC2'G, G4(C3--CCjC,)GO

C-= 5Liing eqrs. (115) and (H17),

F GC'G1  -- CG C'G 3  0 o 2
= [cC 4 j'G, G,(C 3 -CC' C,) 3 0 { J (118).

SLice disrpamr-,nts are continuct in crossing ovr jincicnr 1 and 1',

.. -
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{di,} (FU19)

Eqim. (H18) aixd (1119) can be cmn~ired as

.1 0 0 0 Idi N
d 0 10 0 dij

G4 C~'G1  *- 4 f C1G3  0 0 P.(120
IPi G2C 4C 'G1  G2(C3 -C 4C2.C)P J

Keeping in mnd that 1 crrespondis to member I and 1' omrespoxds to member 11, ajn. (IM20) can

be rewritten as

jd, 0 o ' Id,
Id,, 1 0 1 0 0 ,
fPu IG 4Cf'G -G4Cj1 120 1

'jt G-ZC 4C2I'G, G2(C3-C4CZ IC1 )G;3 0 0 PlJ

Now let the trmfer matrix in eqn. (=11) be 2 for station 1-1',

* (d, 1 di

0',,

(d, b b 1

b;;b; pj(3
*( I
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The directial relationships between the local state vectors in rmbr 11' to that d the

global res in member II at junctin point 1' is shown in Fig. -3. Inspectim of Fig. -3 gives the

following relations, .1

a^.=~4i ~ 1~ 0. =

I =V 1 o 0 -W (M4)
01 -1.

ic

a." d NI,N ;,141 = -M ;I, -V 1""

r •

M-1 0 "M"001 1 V (,tS)
0 -1 0 NJ1

Cmbiring eqts. (IU4) and (112),

G ; G { } : . (0S)1

00

and whe re"

~q .
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* = 0 1 2
0 -1 0l

Referring back to Fig. I13, at station 5, which invoivs the transfer of state ectors in

* station I'through a length of e/2 from 1' to 5,

or

* <j~~~G =T' 0 ~ ~

where T"2 is the tramfer matrix for a Tumoshenko beam of length Vl2. Sinc from en. (FM3),

31= *'1bL ,, -1 , (ns)-

Substiution of eqn. (tt28) into eqn. (I27) give

= G 0 [k(b-b lk 1 ' [bkb3 3 fLb34L
7-T 1 0 G;j[b;ib;j k4 jk4 2  b 43b4 ILI IC -C

(IC,9)

frora hich

£ 0 ][bL [ I -[b3b3]

Hsc-c'(w) =-Tt 2  Gj Itbibi [k41 k32  [b 43b 4 (1130)

Siilarly, for statio 4,

-S

* * - - * ~ * . . *---*- .-.
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1 22 133 b31

= ,2 01 I bJ b [k31 k41 b4b1
R<w =-"

2 [' J[bl bI( 3:k k4Z bA b,

(H3 1)

where b, ' are 3x3 submatrices c B' = X'. For station 6,

G I bV b k4L k42 j ,b4 3 b,4

(H32)

wtre bv are 3x3 submatrices of Bv = X-2XX 2XI.

To obtain the state vector at locations to the right of excitation station. C-C', it is more

onenient to use trasfer matrices from right to left. Since the derivation follows the same

procedure outlined previously, it is not discussed furthr bere.

m

*......
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MEMBER I
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en

0 A 1 B 3

I I C

* 45 6

C'
*0' A'1'8 2/ 3'

Veiwt

* MEMBER 1

Fig. HI A 3-pay planar structure loaded with a
sinusoidal shear force at C and C'.

I0
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*V ( L MAIN MEMBER

VI:1R

* M

47W*NI

COUPLING
MEMBER

F Vsa

V I7*~-~'.i.** -_'.
. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
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5

* -*Vi W1 N 4 ,- ul

SN t, utI

Fig. H3 Directionci relations between global and -
local state vectors at location I'

* I7

4-w-
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APPENDIX I

TRANSFER MATRIX FOR 3-D WAVE

PROPAGATION IN A TETRAHEDRAL TRUSS

TI transfer matrices for wave propagation in a tetrahedral truss are derived in this

appendix. Fig. I1 shos a tetrahedral tnuss with three repeating periodic units, whtich is to be used

in the derivation of the transfer matries. The tetrahedral truss is assumed to be made up of identi-

cal elastic bars with distributed mass and circular cross sections, each of length t. Each connecting

bar has modulus of elasticity E, mass density p, shear modulus G, cross-sectional area A, seond

moment of area inertia about the Zor y axis J, second moment of area inertia about the xaxis Jr,

and radius of gyration about the x or z axis i. TI1 cross-sectimal dimension of each cxtmecting bar

is assumed to be small ccnared with its length. Fig. 12 shows the sign cmventims for the forces

and displacements in a connecting bar in the globaI xyz coordinates. Each bar has longitudinal dis-

placement u, transverse displacements v and w in the y and z directions, respectively, and angles of

rotation. , q and 0 about the x, y and z axis, respectively. In addition, each bar also has moments

M. and ,, about the y and z axes, respectively, torsion T, axial fcrce N and shear forms V7 and

V, along the y and z axes, respectively.

In Lte anaysis cf 'vave propagation in a tetrahedral truss 11g. 1l), thr transfer

matrices, namely, V.,V,, and V 3 are develcped. Fig. 13 shows an aritrary segment of .he

tetrahedral truss and Fig. 14 shows the segoment ,iich is sectiortd along plans p ra-11el to the y"

planes into the subtructures respsible for the transfer matries V1 , V2 and V3 . Referring to Fig.

14, tLe sections are made by cutting the periodic unit (Fig. 13) along planes GAR IDA, EKtF LR

(cr ELKL.FLLL) and HBLJCL vtich are all parallel to the yz planes. The subscripts L and R used

fcr pcints E, A, D. F, K, L, B and C de,-re points just left ad right of these pints, r-espectively.

T-,us, ze fiht trasfer matrix V. -."e,-5cns thL tra:,fer of state vectcrs in membe-s wich join

-7 
"
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_%

members I and i. For example, members AD and BC each rsult in a transfer matrix V. The

secand tramfer matrix Vz involve: the transfer of state vectors in four bars, each of length V/2 in

members I through IV together with members which ornnect member I to member II, member nM

to member 11, member I to member IV and member m to member IV. Referring to Fig. 14, this

includes members AtKL, IFL, Dj LL , GjEL, ARFL , DRFL, AtEL, DgEL. Lastly, tranfe matrix

V3 is resonsible for the tmifer of state vetors in four bars, each cf length V/2 in members I and-

m together with members whfich comwct member ti to member I, mnber 11 to number Ill,

member IV to membe I and member IV to member M. For example, referring again to Fig. 14,

this includes members K BL, F)RJ, LqCL, E,H, FwB , B gC, E,?BL and ETC,.

TRA.NSF, MATRIX V1

For the flexural and lcagitudinal 3-D vibration in an elastic bar, correspcding to a state

,ector z wttre z {p.

andi

0U

-W I
' P V

C

1.e -3rr-fr matrix 7 is gven as [5],

0I

0..... .. .. . . , . . .... . . . .. .-. . ., ..
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[Ci C2
* T = C3 C4i

Wh~reC L 1 , C 2, C3 ands C are 6)(6 submatrics such tha

Cos 0 0 0 0 0
o C.-C 0 0 0 e[Cl-(a+-r)C3]
o 0 C. -O2 0 e[cl-(--r)C31 0

*C 1 = 0 0 0 cc L 0 0

0 oL3 0 C 0  COC 0

00 0 0c-c

acz 0 0
*0 a2 0

C2  1 sinci
o 0 GJ c

o C' - (C1 --rc0 0

0e sin 9

C 00 0

00 0
oc.,c0 0

0 ac
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00
aa

o 0 02

aa

o 0

0 0 a
aa

o si rC420 3] 0

aa

o -- C 2f+ )3 0
a

si a

o 0 02

o 0 0 0

o 0 cs 0 0 0

0' 00

0 'nC3 0 cjIw

01C 0c -W

*~ ~~ 0 0 ~ 0 ~ 0v V .c--* .- . . -
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a-EJ

aGA,

2 , j

Co A A(Xz2csh X, + XVccs X2)

C, ~~ sinh X, ~ sin X2

C2  N hX, cos X2)

si£ XAK sin A)

Ccrisid--r mn~bcr AD (Fig. 13) Ahich is representative d trarsfe.z matrix VI. Fig. 15

dhc' t1- flecticmal relaticnshirs between tIc gkbal state veccrs, and t~r local state vectcn.
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I1rpecdon c Fig. 15 gim the fallowing relatiom, ".
7..

=- -V u ;- =-

*ft.t

M, M, = ;T -M,

v, =v, ; , = N •'= -V,

In matrix form, for junction D,

1"0- 0 0 0 0" u..)

•"'0 0 1 0 0 0 ,-w.
0 0 0 0 -1 0

0, =0 0010 0 '~
1 .0 0 0 010 01

ri o o o o o

, o o o o o o o Aof y:?:

Al, 0 001 000 M,
=y 0 0 010 0 /

0 01000-10 T r

) D

Similarly, for juncion A,

0.-

,0,:.:.

................................ -1 0 0 ft
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1 0100 00 v

V: 00 10 00 vW(4
0 010 00 -is

~0 0 00010 0

and

0-00 M

2 l 10 0 00 T
0 0e 00-1 00 IV, (5

02 000 0 0-1 v1

1 0 U 0 01 0- N A

JA

Eqns. (1-2) to (15) ca b e%~tten as

po G: DA()

GJ (1i9)

Mvr G,, such dta
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1 0 0 0 0

00 -10 0 0 0
G 0 000-10 p.-o

G1= 3 =0 0 0 0 1 0 010

andi

0 -1 0 0 0 0
G 2  -G 4  0 0 0 1 0 0 (l

0 0 0 0 0 1
o *0 0 0-1 0

For mrnber AD,

{[} = [ I C 2 JL } A (112)

ACreC, C2, C3 andi C4 are defirrd previous~ly.

Frcmneqn. (112),

d Cd 4 +CZPA (113)

£PD =C 3dA +C 4AA (114)

Multiplying eqn. (113) by C2-',
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PA =C Ijn -- CCd^A (115)

Substituting eqn. (115) into eqn. (114),

PD = CC2 d0 + (C3-CICi'tC Od)d (116)

Using qns. (115), (16) and qns. (8) and (17),

PA =G4 C2-GldD -G 4 C2'CtG 3 dA (117)

Using ins. (116) and (16) and eqns. (18) and (19),

po = G2C 4Cf'GldD +G 2 (C3 -CC2-Cl)GJA (118)

Eqns. (117) and (118) giv the force response at A and at D due to the displacements at A ad D.

Now consider Fig. 16, which shows the fcrces at jun=ticns A and D. Fron equilibrium

comiderations,

{D}IN {D}{PO}L (119)

Arre the subscrpts L and R dene poLnts just left and just right f A cr D.

Keeping in mind that A is in member I and D is in rember MI, using eqns. (117), (118)

and (119),

V.

%'0

..................................................................
.............................................. . '
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P .v 0 0 0 I 0 0 0 PI,

p G2(C 3-C 4C 1C)G 3 0 G2C4C-'Gl 0 1 0 0 pill
PI - 0 0 0 001 10 PI,

PA --G4C2j'C 1 G3 0 G 4C2'G 1  0 0 0 1 ,

II I

aL

(120) '

weetesubscripts 1, , anIVdotmebrubrs

In crcssing the joints A and D, since displacements are continuots, ,,

d, 1 0 00 d, 1

Jd,, 0 1 00 Jdi,
dui 0 10 dill (121)

IdivJ 0 00 1 1"f' t

cibining eqm. (120) and (121),

(d, 1 0 0 00000 d,
, 0 1 0 00 0,0 dl,

dil 0 0 0 0000 0 dil

=f 0 0 1 10 0 00 dlv

0 0 0 0C1C 0j0
PC'C 1,G 3  0 G:C 4C-IG1  0 0 1 0 0 p

-G 4Cf 1 C1 G3  0 G2Cf'G 1  0000 I P,

Pill) R G2(C3-CICf'CI)G3  0 0 001 0 0 pi L

Thus, Lcm en. (122),

*, A L*.."2 £.2¢ . ,< ' .r". .- ". ." ".".'-. ..-. ,. - -- o . '-.. . . ..... .--.. - .: .; ... . .% .. i •.' . .". -... ,.. . .. . ..-** .*-
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oJ.

1 0 0 0u0 u 0

0 1 0 0 0 0 0 0

0 0 I 0 0 0 0 0

V, 0 0 0 I 0 0 0 0
,--'U'

0 0 0 0 1 0 0 0

G2(G3-CIC21 C,)G 3  0 G2C 4Cf'GI 0 0 I 0 0

0 0 0 0 0 0 1 0

-G 4C2 C IG3  0 GC2IG, 0 0 0 0 I

.

(123)

TRANSFER MATRIX V 2

Fig. 17 shows a substructure which is representative c transfer matrix V2. Cmsider first

menebers ARKL, IFL, DjrLL and GEL.. Notice that these emers are parts of main members I,

11, 11 and IV; respectively, each f length 1/2.

Frcran eqn. (If), tl transfer matrix T fcr longitudinal and flexural vibration in a bar of

lenth I is given by

T CI [C2

,tre t1 submatrices CI, C2, C3 and C4 %,here defiui previouly. Thus, for a bar cf length f/2,

the transfer matrix T'is given by

T '= c ci (M24)
C~~ 3 4,I

-'4

1 re the submatries C;,Cj,C and C; are obtained by substituting e!2 fcr e in submatries

C C2 , C3 and C,, res ectiely. -

* .°

. *........,
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Using eqn. (124), tl following relationships are obtained,

(IjL [C C;jIPAN (125)

L = C c2  ,),, {(126)

IFL [ C C;] d

ILL tC3  (127)

U L' I [C; C2  tIDJ

U PJL c c,1 W8)

Keeping in mind that Aq , I, DR and G are all left-end points of the substructure (shown

in Fig. I7) in numbers I, l, II and WI , respectively andXL, FL, LL and EL are all right end points

of the substructure in members I, H, M and IV, respectively, and using eqn. (125) to (128).

dr Ci 0 0 0 0 0 0 C; d,
d 0 C 0 0 0 0 C; 0 d ,

di 0 0 C 0 0 C 0 0 di,

dl 0 0 0 C; C; 0 0 0 d..

pv 0 0 0 C; C 0 0 0 p,.
pli 0 0 C 0 0 C4  0 0 Pil

At 0 C 0 0 0 0 C 0

c; 0 0 0 0 0 0 Ch 'p, J
g ML (129)

%Ohre the subscripts Mj and ML denote the right-end and left-end pints of the main mmbers

ory.

Now consider members ARFL,DRFL,AR E and DR EL, %Nch are the remaining

0]-
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members to be analyzed. Nctice that these members, each & length 1, join the main members

together and the local state vector cordinate of each does not coincide with the global state vector

coordinates in the four main members. Thus, with respect to each number, transformation matrices

have to be utilized in order to consider the transfer o state vectors from one point in a main

member to another point in another main member (for example, from A1 in main member I to FL

in main member 11 through manber Ar FL).

Ccnsider firt member AR FL. Fig. 18 shows the crientation of member AR FL in the glo-

bal xvz coordinate. The directional relaticnships between the state vectors in the local axrdinates

.i and in the global coordinates xyz at fL axe shown in Fig. 19. Notice that the local 1i5 axes

are chosen such that tle axis is in the yz plane. To fin ithe tanformation matrices needed to

convert the state 'ectcrs from the local cadinates to those af the global cres, fist assume that the

x--z coordinates is rotated about the x-axis to a new x 'y 'z'cocrdinates such that now the new y '-axis

coincides with the local ' axis. Notice that member AR F is now in the xy 'plane. Fig. 110 shows

the directiomal relations between the local and the rotated global state vectom at FL. Exar-naticn

of Fig. I10 gives the following relatians:

-7' -

0 °
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a =(cos 601)(u') + (ci300)(-w)

cr I;=
2T)(u) + (--)-)(130)

-4 cs 300)YJ (u + (-ccs 600)(-w)

cir -:w = + (.)J,(131)

=(cos 601)() + (-ccs 301) (--0)

crV3
cr (132)

2 2

Cr 8=(--)e)+ (-)-e (133)

2 2-
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and M,= (cm 601)(A,) + (-ccs 30)(t) -.

Mr = (y)(.,) + (-7)(T) (134)

= (-cc 300)(3,) + (cos 600)(t)

+ ,(135)

V;= (cos 60)(V,) + (--cos 300)(t)

or = (2)(I2) +), (136)

N' (-ccs30)(V,) + (a 600)(t)

SN' = 
2 .)(V.) + ((137)

Using eqns. (130) to (133),

1~ 0 V 0 0 0
2 2

20 1 0 0 00 u
" %3 1v'
-~ 0 0 0 0
2 2 o

0 0 0 1 38)
2 2 'p

0 0 0 0 1 0 ', "
-..2  1 .--

0 00 2 2

and ting eqns. (34) to (137),

0

0,

"""- '>....L,.. . . ."" " "" " . .-" " ,-- 
-.' ' i" "" -" ' " ' ":"""', : " """ "' ' . > , ,"""'':t "" " " '"""""\o. . "- -" 

' I -..,"" ". .
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i~ 0- - 0 0 0
2 2M 0 1 0 0 0 0 M,

- 0 0 0 0
T 2 2 T
V;o o o . v (139)

*y 2 2
0 0 0 0 1 0 V!

N• N
0 0 0 022

2 2

To obtain the relafionship between the unrotated global state vectors and the local state vectors, the

x 3'y '' coordinates are rotated back to the original xyz position. This can be dane ising another set

of transformatim matrices. Fig. Ill shows the relationship between the global state vectors and the

rotated state vectors. As before, examination of Fig. I10 gives

1 0 0 0 0 0

0 000

-w \" -3 -w4' 00 0 0 0 v (-"")
-0 V 3 -WS =0 0 0 1 0 0 0)"-'".

0 00 0 0 0 N7"
V3 '3

and

'S%

7

..................... ,-
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ft-.m

N/TlV 00 0 0

M. _ 0 0 0 0 M;34,

T 0 0 1 0 0 0 T' ,0 0 o / (141)
V, I v;

NFL 0 0 0 - V13 0 ,N

3
0 0 0 0 0 1

Ccmbining eqm. (138) and (140),

10 0 0 0
0 2

0 1 0 0 0 0

2 2 0
0 0 0

1 250 0 0 0 1 0

0 00 0 10

FL

1 0 0 0 0 0 u

0 0-\-- 0 0
-v 33 :L-

0 00 0 .w ..0.

00 0 0

0 00 0 0

L 3 %L
FL.

from ,tich

S..'

S.
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1 0 0 0 u

00 0 0 v -

4 N 0 0 0 -w

1 1 1 :.-

0 0 022

0 0 0 0 V 7  4

v-3 30 0 0 6

FL FL

(142)

Cainbiing eqns. (139) and (141),

/Z 2 0 0 0 0

M o o 0 0M, -V 3 3i:

T 0 0 1 0 0 0

SV0 0 0

NFL 1 0
V3

0 0 00 00

10 1 0 0 0 0

23 20 1 0 0 0 0 T

0 0 0 0 v,

2 2

0 0 0 0 1 0
,N

0 0 0 "%3 0 22 2

frcrn Ahich

70
.-...... .... .... .... ...
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01 
12 0 0 0 T

T 0 0 0L/ 0~ T
2 32V

1 0 0 0 iT\~

N 0 0 0 0 2 N

FL FL

* (143)

Similarly, corideration of ju=rticn ART gims,

U 2- 0 0 0 u

v 0 / . 0 0 0 v

0W/ 0 0 2 -W

',0 0 0 10.

An AR 0 0 0 AR
J# 2 2 3 j .
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0 0 0 0 MY

Ati T 0 - 0 0 0 T

o T 

*V, 0 0 0 .I\/T *j \1Vz

N FL 0 0 0 0 N FL2 2

(145)

Eqr. (142) to (145) can be rewritten as

1.- G;diL (146)

* -"L G5FL (147)

d,, : Gd, (148)

ePA R G4,. (749)

0 0 o
T -2 -2-2

0\7 i-~ 0 0 0

3 1 3 o%3
3 1 o N/77 0 T0 0

0- 0 2 2

o 0 0 0 .

0 o % 1

... -. .......-.. ... . .. - ... - - -
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00
Ii!

2 3 \3 -2

%7- 0 0 0
2 2G -G; .'2

0 0 0 l-v 1
T V3 V,2

0I0 0 /'VT N/77 -" L .o 02 3 2v M

0 0 0 0
2 2

Fran eqn. (II), in the local .i2 coordcinate,

PL C 3 C4 tA (0

Thus, from eqn. (I50),

dpL CdAR + C.Cf, (15).

a:'i PYL Cg +C4A3 (52

Multiplying eqn. (151) by C2',

R =C2 'dFL - 2'C ; d. (153)

Su titutiny eqn. (153) into eqn. (152).

0
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Pr L =C4C2 d, +~ (C3 -C4C2-'Cl)AR (154)

Using eqs (153), (146), (148) andi (149)

PAft =GXCf 1 G dPL - GXCGdAjt (155)

Using eqns. (154), (146), (148) and1 (145),

NFL =G C4C2-'Gd, +G (C 3 -C 4Cj-'C)G~dAR (156)

If the same procedure is carried o~it fcr members DR FL., AR EL ari Dv EL, an i~f for

the analyrsis of each member, taking the left end point arKd the origin of the local coordinate andi the

*dicin aongth ength ofte member as thelocalI dircn i~ththe is in thgobl yz

plane, the follcming relatims are obtained.

For memaber DRFL,

PDRq G;CZ2 G,.di,, - GC2IC GdDv (157)

PI =G 2 C 4C~1 ~, + G:(2 ~C C'GdR 1

where



* -166-

-¥ -y -y o o
10 0 0

2 

o V.- T'NT 0 0 0

1- '-' --

3I 3

T 0 0 0

T o - ooo

G; =G;= 0 0

o' / o o _
23 2 2

20 0 033

*0 0 0 2 'T-L/7

0 2 3 2 3

Fcrn..w bereARE,

PAR. =G 'Ci1 'G fdgL - G c 'c ;' A ('159) i

PEL = Go C'GfdEL; , +- G;'(c3 - c4cf o'C ,d, (160)

o o

2 3%

1 N/T.o o
1 -2. 3.2

40 -V50 0 0

-'." 2 2-,1, -, , ,, v "- " . ." ' - ' , " . ," " . , , . ., . .." ) . . , . . •. .,
~~~ ~ G: ' m 1"d "> " " " ,. t . . .,, .-. _ .
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1 1 1 .- .

* =O'= 2 2 2T 0o00
o o/ o~ _.. 0_ 0_

10 0 0
1 1

0 0 2 2 2o 0 0
0 0 0 1 1-,

20 0 0 0

0 0 0
2 3 \3 "2

o o o -beT-I).-EL,

and Atcre

o o o ".

• 2 2 "i
• o~~~~~;' =-o' i

2 2

- ,. > .-" -

i For member D E,

Pp = o7 2" G~ 1'aEL - G4 'C2 '~C IG 3'o *de(61).-;

P,Lr 2 2 1 L -"(62

wi.rre
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1 1 1 0 0

1-.
G,7 =;"= 2--Vo.,' 0 0 0

V31 1 LN 7 -o o 0 2 2

o o 0 0l-2 2 2 [

V3. 3

0 0 0 ~ / ~ j

andi where G' -G:

0 00

1 V ~/TV1 0 0 0

1 .

0 2 0

0 0 0

00 0 0 LN

0 0 0 2 2 "

Eqrn. (155) to (162) gim the relations beteen the indued forces at the end point of

member AR FL, DA FL, AR EL and DR EL due to displacements at A and FL, D.R and FL, A and

EL, DN and EL, respectively. Keeping in mind that AR refers to a point in main member I; DR

refers to a uxint in main member l, EL refers to a point in main member IV, and FL refers to a

point in main member 11, and introdudng a set cf matrices D, through D 6 such that

'.7p

....... ,.. .................... ,........... .. A .
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D, =GX2C'GG

D3 =G2'C4 C.1 Gi

D, =G21(C 3 -C4C'C 1 )G;

D5 =G:C2'Gl'

D6 =-G~C-C 1 G;

* D7 =G;C~Cf'Gl*

Ds =G;(C3 -C 4C2'C1 )G;

D9  G"C 2-GJ

D10  -G;C2-'C 1 G3

D1=GC 4 Ci1 G

D,2 =G;(C3 -C4 .C2'C1 )G;'

D,- =G,,C-"G'

D,5 =G;C4C27G

and D16 =G;(C 3 -C 4C-'C )G;, . (155) throuigh (164) canbe exprmsed in matrix form as

40

4p
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l  0 0 0 0 0 0 01 d,
dil 0 0 0 0 0 0 0 0 du,
di 0 0 0 0 0 0 0 0 di
4,, 0 0 0 0 0 0 0 0 d, (163)
P.i, =D 12  0 D16 DtI +Ds 0 0 0 0 Pp',
Pil 0 DS D6+D1 4  D13  0 0 0 0 P11.
p1 D, D3+D 7  Ds 0 0 0 0 0 P11
P D2+DO D, 0 D9  0 0 0 O P,

CR C, .n:;

where the subsaipts CL and CR denote the left and right ends of the connecting

merrber which join the main memabers in a section of a periodic unit which results in transfer lD

matrix V2 . Ncw, adding the ontributions frcrn members ARKL,IFL,DRLL and GIEL ising eqn.

(129), to that in eqn. (163), transfer matrix VL can be obtained. Notice that the addition of the ele-

ments in the matrices in eqns. (163) and (129) is in effect adding the contributions fra- the consti-

tuti'. mnabers which make up transfer matrix V1 . Thus,

d, c; 0 0 0 0 0 0 c d
d,, 0 c; 0 0 0 oc 0'i 1 d1,
di,,, 0 0 C; 0 0 C2  0' 0 d
d , 0 0 C; C 0 0 0 2d l,
PI DoO 0 D,6 1 D,5+C; C4  0 pl
Pill 0 D5  D6 +D, ;-C; D. 3  0 C 0 0 P;11

D4 D++D7 '<C D& 0 0 0 C. 0 p',
P D2-- D 0 -C; D, 0 D 0 0 0 C, Pz

R L

o I!
~.-
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C; 0 0 0 0 0 0 C "

0 0 0 Ci C 0 0 0 -'
V2 = D12 0 D16  D11+D154C;C' 0 0 0

0 Ds D6+D144C D13 0 C; 0 0

D4  D3+D 7 +C; D8  0 0 0 C4 0

D2+Do+C; D, 0 D9 0 0 0 C4

(164)

wtere the subscripts R and L dezxne the right and left ends of the memens in a section of a

periodic structure which results in transfer matrix V2.

TRANSFER MATR'X V 3

Fig. 112 sho a substructure which is representative of the transfer matrix which is

representative of tramfer matrix V3 . The derivation of the transfer matrix V3 is similar to that of

the transfer matrix V2. Referring to Fig. 112, members KRBL,FvJ,LvCt and ERH, which are

parts of main members I, fI, M and IV, respectively, are considered first. Members

FRBL,FRCL,ERBL and ERCL are then cosidered. The tra fer matrix V3 is then obtained by

adding the contributions of all eight members, as was done for transfer matrix V 2. Since the pro-

cedure is similar to that of the previous section, it will not be repeated here. Transfer matrix V is

cbtid as

C 0 0 0 0 0 0 C.

0 C ~ 0 0 0 0 C2 0
S0 0 C 0 oo o .

0 0 0 c; c; o o o
VE 0 E13  E 10-E. C3C 0 0

0 Es EI-E,3-+C; E,6  0 C; 0 0

El E2'E+C; ES ( 0 0 C4 0

(T65)

A
'Atc~'
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E., =H C2-'H d

E 2 = -H4C2'CH;

* E3 =HCCi'H{

E, =Hi(C 3 -C4C 2 'C1 )H;

E s5 H;C 2'H~

E6 =-H 4 'tjt C 1Hr3

EIC 4C -'H;

ES =H (C3 -C 4Ci'ClDH 3"

E1  C HC 4CjH

E:2 =Hr(C 3 -CC 'C1,)H;'

£14 -H C-=,;

E15 =H'-C4C2'~

E-6  H;7(C 3 -C4C2'C 1 )H;*

and Hi through H7* are trmformation rnatrices such that
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1 1 _12 0 0"

2 2 0 2 0 2.

o 0 0 o o o

00 0 22 320
oT o2 \/ -2 -3"

1L/10 0 0

0 0 0 0 00T-

V3 3

2 j 0 0 0o o 1

2"

0 0

2) 2

71- -\73 T

0 0 0

H; H;2 2=-2

0 0 o 0 _ V,""

"33

• 232\ 0 0

0 0 0"
\.__ 3 1 3
o I'. '.'

o o o o ..-.-..,
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0 0 0

-2

0 0 0 0
2 2 1 2

o 0,~\/

01 0/iA 0 0/ A
H1

7 H2 2 3~2 ~ 2

0 0 0 2 2 "o 0 0 0

-- 0 o 0

'~' 'L 0 00
-2 32 \3 2 3

0 0 0
2

0 0 0 0

00 0 0 1\/

22 2

~o o o ..
2v 3 3

0 0 0 "V 2

!. _._ oI

2. 2 2 .

0 0/z 0/T o o o -
3 3"2

0 0 0 -- ---
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2 77 0 0 0

0 0/± 0 0

V%3
0l V 0 0

H 1 =H:- 0 1 1. 1 1
o 0 2 2

0 o 0 0 .. \/

0 0 0 VT3

1 0 0 0

20 0 0

o 0 0

0 022
0~C -2V3 %

00

%/7
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LENGTH OF EACH BAR '

MAIN MEMBER TV

* MAIN MEMBER Z

MAIN MEMBER I

0 MAIN MEMBER U

Fig. I i A tetrohedral truss.

707
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-jS,~~ TN ,

V y0z#z

Fig. 12 Sign convention for the forces and
displacements in a connecting bar.
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LENGTH OF EACH BAR I

2 -0 -MAIN MEMBER

MAIN MEMBERI

0%

MANMME

A6

Fig. 13 A periodic unit of the tetrahedral truss.
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G EL ER H

/, \ \ / '

RIL// CR
/' I I /,,

A/ RAR: / 'KR /~K7 L
A ,/KL\ 

-
\ / / -'

I FL FR

TRANSFER TRANSFER TRANSFLR TRANSFER
MATRIX MATRIX MATRIX MATRIX

vi V2  V3  V.

Fig. 14 Sectioning of a periodic unit into constituent parts
comprising the transfer matrices.
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A A£A

U, O,T, N

A A A A
MAIN MEMBER M u,#T, N _______ f

jvzzMzteew 4 r 9,

r~.I%5 Dirntioncl r3lotion3 b-st-mNbn qicbal and local
34tot3 o#ctoro, 0-1 location~ 0.
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*O

G EL2

DR
*~ L

A AR ~KL

I FL

C

Fig 17 Tatrahedral truss s1ction for matrix V2.
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A R,

F ",

./

/

/1/

/1e o m i

-rOn

/7;:

9 %

FLM

9!

Fig. 18 Orientatrion of member ARFL in thie

global xyz coordinates. ::
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y FL

* Vy, my,*,

y/

V Z, M Z, 469W

2

coso -a

Fig. :11 Directional relation3 between the rotated
and unrototed global state vectors at
location FL
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Fig. 112 Tetrahedral truss section for matrix V.
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APPENDIX J

LIST OF COMPUTER PROGRAM

This section gives a Basic language computer program, named PROG1, BAS, which

calculate the frequency reslxnse functions for an elastic rod. Fig. 31 shom a schematic of the rod

and the symbols for various location used. PROG1BAS calculates the frequency response

functicn, according to discrete frequency steps, for locaticns A, B, C, D, EL, Ejr, F and G, where

EL and ER are points just left of E and just right of E, r pecticly. The values of the frequency

response functions are stored, according to frequency, onto files, ome file for each location. Thz

letter before the decimal pcint in each file name denotes the respmse lxation and the word used

after the decimal point denotes the type of response which is being stored. If a file name ends with

the word one, the response of the longitudinal displacement is stored whereas, if a fle name ends

with the word two, the response of the axial force is stored.

0n

C-%

€" I

~ i m . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . ._,..,. :
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PROGI .BAS

on error goto 84
defdbl t,e,w,m,a,b,l
defint i,j
option base 1
dim t(2,2)
read e,m,l,a
data 10.8e6,2.6e-4,10,9.75e-2
input "Enter the starting point :",kl print
input "Errter the terminating point :",k3 print

10 for k2=kl to k3 step 10
w=k2*100
for i=1 to 2
for j=1 to 2
t(i,J):O
next j
next i
1=1*2
gosub 1000
bl =t(2,2)

* 1=1/2*6
gosub 1000
al=t(2,2)
open "a", 1, "freqa.one"
write #1, w,-bl/al
close 1

* 1=1/6
gosub 1000
open "a", 1, "freqb.one"
write #1, w,-bl/al*t(1,2)
close 1
open "a", 1, "freqb.two"
write #1, w,-bl/al*t(2,2)
close 1
1=1*2
gosub 100C
open "a", 1, "freqc.one"

C write #1, w,-bl/al*t(1,2)
close 1
open "a", 1, "freqc.two"
w rite #, w, b1/a1*t(2,2)
close 1
1=1/2*3
gosub 1000
open "a", 1, "freqd.one"
write #1 , w,-bl/al*t(1 ,2)
close 1
open "a", 1, "freqd.two"
write #1, w,-b1/a1*t(2,2)
close 1

gosub IC00

-_ ," .:- '-- ," -. ,. .. . .- ' "--- .. -. - ". - --. .- ".. .. ... --- -.- - - . .. . -. :-
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open "a", 1, "freqel.one"
write #1 , w,-bl/al*t(1,2) 6e
close I
open "a", 1, "freqel.two"
write #1, w,-bl/al*t(2,2)
close 1
b2=-t(1 ,2)
1=1/4*6
gosub 1000
a2=t(1,1)
open "a", 1, "freqg.one"
write #1, w,b2/a2
close 1
1=1/6
gosub 1000
open "a", 1, "freqf.one"
write #1, w,b2/a2*t(1,1)
close 1
open "a", 1, "freqf.two"
write #1, w,-b2/a2*t(2,1)

4 close 1
1=1*2
gosub 1000
open "a", 1, "freqer.one"
write #1, w,b2/a2*t(1,1)
close 1
open "a", 1, "freqer.two"
write #1, w,-b2/a2*t(2,1)
close 1
1=1/2
next k2
goto 86

84 kl=k2.10
resume 10

86 end
1000 th=l*w*sqr(m*a/e)

t(1 ,1 )=cos( th)
t(1,2)=l*sin(th)/e/a/th
t(2, 1 )=-*I*w*w*sin(th)th

t 2,12) t 1 1I

return

- . . I%
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No iWt

Fig. J1 An elastic rod loaded with a sinusoidal force at E.
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APPENDIX K

SOME PROPERTIES OF TRANSFER MATRICES

CRoss-SYVM.ETY .

If a segment of an elenent is symmetric about a plane at its midlength as shown

schematically in Fig. KI, then it is always possible to obtain a cross-symmetric transfer matrix,

which represents the element, by a suitable ordering and sign convention of the components of the

state vector [71. The transfer matrix is crcss-syrnnmtric in that its elements are symmetric about its

crss-diagonal. Thus, if the elements in a crcss-symmetric transfer matrix T are tj, where

0 i=1,2,...,n for the rows and j=12,...,n for the clumns and n is the dimensin of the transfer matrix

(transfer matrices are square matrices), then

,,j =to% .,. .,. A _1,-. (KI

For example, the transfer matrix for an elastic rd can be cbserved to be crcss-

symmetric using the state vctr as defined. Similarly, it can be shown that the transfer matrix for

a TMnoshenko beam is crss-symnetric with a suitable ordering of the comnents of the state vec-
to.

LNW'ERS ION

For a given element, there exists two possible transfer matrices to relate either (1) the

state vector at the ight end to the state vector at the reft end, r (2) the state vectcr at the left end

to the state vector at the right end. Let T be a transfer matrix hich relates the state vector at the

right end to the state vector at the left end cf an element. Thus,

* p°

S m
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zX = TZL (K(2)

where zj and zL denote the state vectcr at the right end and the state vectr at the left end of tbe

element, respectively. Eqn. (K2) cn be rearranged to yield

ZL (1(3) .i',

Eqn. (K3) shows that the state vector at the left end is related to the state vector at the right end by

the inverse of the transfer matrix T.

For example, the transfer matrix relating the state vector at the left end to the right eid

of an elastic rod is the inverse Cf the transfer matrix relating the state vector at the right end to the

left end c the same rod.

It may also be shown that transfer matrices are ron-singular and that the inverse of a

transfer matrix is equal to its adjcint [7].

VALUE OF DETEr NANT

It can be shown that the determinant of any transfer matrix is equal to unity [7].

For example, the determinant of the transfer matrix for the longitudinal vibratim of an

elastic rod (or the inverse of the transfer matrix) cn be show, to be unity alaebraically.

Because digital cmputations are necssary in applying the transfer matrix method, the

nurerical evaluation of the determinant Cf tha transfer iatrix pro'ides an opprtunity to determine

the accuracy of cmaputer-aided numericl results. Table K1 sh the listing of a Basic language

computer program named DEIl .BAS, which clculates the determinant of the transfer matrix for

the longitudinal vibration of an elastic rod at various frequencies. Table K2 shs the listing Cf a

Basic language computer program named DET2.BAS, which calculates the determinant of the

transfer matrix for the flexural vibration Cof a Turoshenko beam at waricus frequecies. The

. as
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program are evaluated using double precision on all variables and calculations; that is, all variables

and calcuiations are carried out to 16 significant fgures. Table (3 shows the cmputer values of

the determinant for the rod and the Timshenko beam at various frequencies. From Table K3, it is

observed that the determinant of the rod is always calculated orrectly as unity. However, it is

observed that the determinant of the TrMsbenko beam is calculated to be unity only at low fre-

quencie such as les than apprcirmately 6000 rad/sec (approximately 1000 Hz).

EIGENVALUES

It can be shown that the eigenvalues (that is, the natural frequencies) corresponding to

vibrations ct a structure evaluated using the transfer matrices relating (1) tl state vctor at the

* right end to the state vector at the left end, and (2) the state vector at the left end to the state vec-

tor at the right end, are identical (7].

For example, the natural frequencies af longitudinal vibration in an elastic rod shown in

Fig. K12 can be evaluated using the transfer matrice for the rod. As shown in Fig. K2, the rod is

clamped at the left end and is free at the right end. TIe state vector cf the rod at the right end is

related to the state vetor at the left end by a transfer matrix as

t sin 0""-

= g4]}(X4)fV R , , si 0 "o ""0

vere u is the lcngitudinal displacement N is the axial force and the subscrpts R and L denote the

right end and the left end of the rod, respectively. Imposing the boundary conditicM of

F"

02i,
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- ;0 ,at x-0 (K(5)

and N. =0,at x =e (K6)

into eq. (Y.4) gis

Co( sinO '

uEAG 0 (
sinG -s 0 N

Eqn. (K7) can be i-written as the following to equations:

ujt = T--" 'V .:

From eqn. (K9) ntmtrivial sclutiom require that,.-

cr o 0 -  fcr n=1,2 ....... (K1l)
2

. .

subtitin f n. (K12tiva sito requ tht gve

h", ",1
S U.
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ew\N/3 (2n -1)wfo n 1 2 (K1 3)

Fran eqn. (XCI3), the natural euerxies for longitudinal vibration of an elastic rod is

-a (2 n-1)irV/7-7 for n=1,2,.. (14
- 2 p

Similarly, the state vectcr of the rod at the left end is related to the state vector at the

right end by a transfer matrix as

f sin 8

PL [jsinee N

Imnposing the boundiary conditions in eqns. (K5) andi (K6) gives

0E 1} (16)
Eqn. ()16) a b rewritten as the following t , equations

_ 0 Cos - (417)

inn _

riand end py w- truse (atri a8")

From eqn. (,17), ncxnrivia solutions reqire that

0'

.9.. ~ - -4
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Co_ 8=0 (K19) J

Sinc eqs. (K1o) and (K19) are identical, the same natual frequencies as given in eqn. (K14) will

resuit. Thus, it is demntrated that the same eigenvalues (or natural frequencies) are obtained

using the tranfer matrices relating either (1) the state vector at the right end to the state vector at

the left end, or (2) the state vector at the let end to the state vctor at the righ end..

4.

* -'.

0L#

0I "
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Tabie KI. Camputer listing of pcmm DET1 BAS

'.

detfint ioj
* defdbl a

option bast I
dim a(2,2)
read ,ar.ro.l
data 107.1. .84e-I,3e-4,9.7S
input "The frequency of vibration is ";w print
iprint "The frequency of vibration is I";w print

f or 1.1 to Z
for jut to 2
a( i j

next .
next i
gosub 1000

de t=a( , 1)*a(2,2)-a(1 ,2)'a(2,1)
Iprint "The determinant of transfer matrix is "1det 1print
end

1000 th=lw'sqr(role)
aCL, )zcos(th)
a ( ,2) ( 1a , I )
a( 1 ,2)z 1/1. ar/ th'sin(th)
a(2,1)=-e*ar' th/ I'sin(th)
return

. .
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Table la. Cczputer listing of prm DET22MA

defirit i,J,Mtn,k
defdbl a~b~c~eggr
option base 1I 

-dim a(12,12) ,b(12,12)%
def fncsh(f)-(exp(f)+exp(-f))/2
def fnanh( h)u (exp( h) -exp( -h) )/2

* read evg*,artbi,ro~rt1,ga
data 10e7,3.84e7,l.84e-l,2.85e-3,3e-4,l.24e-l ,9.75.5.92e6
input "Enter the frequency of vibration : ";'w
iprint "The frequency of vibration is ";w
gosub 2000

for i=1 to 12
0 for j=1 to 12

a( ±,j).
b( i,j )-o

next j
next I
gosub 3000

0 for 1=1 to 4 2
for jul to 4
bi,j )-a(1+4,j+4)
next j
next i

* print "The beam transfer matrix is
for i=1 to 4
iprint b( ,i) ;b(i .2);b(i ,3) ;b(i ,4)
next i U

dl=(b(1,l)'b(2.2)-b(1,2)*b(2,1))*(b(4,4)*b(3,3)-b(3,d)*b(4,3))

* d3=(b(1 ,1)*b(2,4)-b(2,1).b(1 ,4))*(b(3,2)*b(4.3)-b(4,2)*b(3,3))

det=dl-d2.d3*d4-d5.d6
Iprint "The determinant of the beam transfer matrix is =";det

* end
200C suaro/ar
a= I ^2 )e /b i
b4z8u*(w-2)*( 114)/e/bi
amsu*(w'2)*(1'2)/ga
tnsu*(r2)*(w2)(1^2)/e/bi

6th 1 w* sq r( ro/ e)
llmaqr(sqr(b4.(((s-t)-2)/4))-(a*t)/2)
12. aqr( sqr( b4 ( ((s-t)'2 )/4 ) ).( s~t/2)
10:11(H(1 2)+(12'2))
cOmb 10 12^2)*fncsn( 1)l<12)cos(12,,

c2-1C'(fncsh(11i)-cos( 12))

return

7-1



* -200-

Table X2. Ccmt. COUUT~ listin of pmgram DEMSAS

rem subroutine to form beam transfer matrix
3000 for im1 to 12

for j=1 to 12 .

a(i,j)-o.
next j

next i

9(4.4)-a(1 91)
a(9,9)-a(1 ,i)
a (12 ,12)=a(9)
8(1,12)u1*sin(th)/(e*ar*th)

a(2,2)=c0-B~c2
a(5,5 )-&(2,2)

a (5 ,6 )-a (2,3)
a(2, 10 )sal*c2

0 a(3,11)-a(2,10)
a(5,7)-a(2,10)
a(6.8 )ma(2, 10)

a(5.8 )-a(2, 11)
a(3,2)ab4/1*c3

0 a(6,5)-8(3,2)
a(3 .3) -c0-t~c2
a (6,6)-a(3 ,3)

a(6,7 )-a(3, 10)
a(7,5)-b4*c2/al
a a(8,6 )-a(7,5)
a(10,2)-&(7,5)
a (11 .3 )-a(7,5)

a ( 10,3 )-a(7 ,6)
a(7,7)zcO-tc2

* a(10,10)-a(7,7)
a( 7,8 )=1*(cl- (s. t) *c3)

a(10,11 )za(7,8)

a (11 ,2)-a(8,5)
a( 8,7)ub4*c3/1

* e(11,10)-a(8,7)
a( 8,8)-c0-B~c2
a(li11 )ua(8,8) -,

a(12,1 )-&(9,4)
return
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Table K3. Ccarputed Values c tr terminant of Transfer Matrices for Uniform Rod and,
Tioshlerlda Beam for Various Frequencies of Vibration*

Computed Values o the Determinant of
Fe n Transfr Matrix for
Frequer~y ?

(rad/sec) Longitudinal Vibration Flexural Vibration
of Uniform Rod of Uniform T'rnosenkl"

Beam

10 1 1
100 1 1

1,000 1 0.99999
1000 1 -0.0625

100,000 1 1S0144x>1016
1,000,000 1

01

Fir ft Tmhek team, dasrx us is 7.46xl0'0 P3 '10.8x X9 0 ,~ sha rnilus is 2.75>3(0'0 P3
4flX1OP -a) ct'-s--eaaa1je is 6.0441 ml 9-375x n) . ewnd mren d area irta is -

4.5-9X10OD m4 (1.098 xIO- 1  mar~ss censirv is 7.2kgp 726X0 ibm lin-), mdi~ d gyraon is
2.714xl-1 m t1 .0838 x10'in),ane!gth is 2'.3X1 ' m (9.75 in)
V,.Lc ed

........................................................
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PLANE OF SYMMETRY

H LENGTH I

Fig. K i Segment ol an element represented by
a cross-symmetric transfer matrix.

70 -
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.eS.

>-'S

E, A,p

X. u

Fig. K2 An elastic rod constrained at one end
I ~nd fPree a't the other end...,

Z-
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APPENDIX L

NON-DIMENSIONALIZED FORMS FOR TRANSFER MATRICES OF A

3-BAY PLANAR LATTICE STRUCTURE

7r ncn-dimemicalized forms for the to transfer matrices X, and X2 for the analsis

of vave propagation and vibration in a 3-bay planar structure are derived in this alenidx..

Frcm eqn, (39) and eqn. (40), the tvm transfer matrice X. and X:, x "ripding tcza

state vectcr Z such that

[pit

* 2

ar4 wher e p

al V '_ h17f- Su scnts ,r cte e!.L'-nct" num'=s, are p en -'

.~~~~~- . . . . .,
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0 C1 C2 0 
(L2)X1 0 C3 C J 0"2)

L3 0 0 C4

* 10 0 0
0 0 0 2

X 2 = G4C
1 GI -G 4C21CIG 3  1 (1)

G2C4C21 G G2(C3-C4C2 C1 )G3 0

S is the identity matrix, 0 i the null Marix, Cl, C2, C3 and C4 ar 3x3 submatrices and G1, G2, G3

and G 4 are transformation matrices such that

Scos 0 0
C, = co-cC2 e[cj-(o'±,)c3]

0C
0 -TCe2

C3

0 e-sin
O e 0 3  EA ;

c2  E , ----J [- ac , + (13-i-c)c 3] 0

t0

EE - r-- L

13'EJ 3EJ

C 0 e3  f2

• 0 0

..C4 [ C3  CO -aC2

00

S. . . . . .. . . . . . . . . . .,
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,1

G , = 0 1 1 o01

G2 = 0 -1

00 .

10 01
0.

0 1
G4=[0 01]
G 0 = 0

o V hc
cl~~~~~, =~chX,-a 2

-_o o1

C4 =  2

whereX

Cw -A - 4 - -"--

.0..

N1
-0o

7 ..
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EJ

Now assume that tl cnnecting bars have identical square crcss-sectiors af side a such

that

Na1 (L5)

-5 2

A T2 (L.6)

Fromn the- elastic thwry of isotro~pic materials,

2(1 +v)

'..

f= (L9)
a

where fl and ea are both inondimeneicualized lumped parameters. Uing Equation (IA) through

Equation (B9), the v~ariables 8, a;, and us ed in the transfer practices X, and X2 cain be

rewitten as

v12 .*
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e = n 
0.lo) 

".-

(LIO)

a 1 V2 fI 2 (L ii)

1 (L12)

S121'ea 2  (L13)
Now replace the state v Z given in Equation (Li) by a new non-dirmensicmlized

state vetcr Z such that

[dj

di dF -4 - (L14)

whbere

and whre

M e

Vii

* EJ

N
Ea2

Equations (1.2) and (12) can no- be rewritten as

,:.S

0%

A . * . - A -- * * - . - - - ~ . * . A ; . A
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C,0 0 c2

* C3 C4 0

1 0 0

* I 0 001
ard X 2 = GCG 1  GC G 10 (L16)

GC.CjGI G.-(T,- 4 C1C1e)G3 0 1]

wer

cosfl 0 0 1
0 wO-W2 [c1-(E+r)ca]I

[0 W4C3  C. -TC2 J
sinfl

* ~= C2 [r+P( C 0
C1  TC3  0

C2 J

o WC [--TC1 + W2)]

C3 = 0 p'(cl-uW3) 2

fl sinfl 0 0

C 4 = 13'C 3  CO Ia 0(aC O 0
0 0

Ntice that X, and X2 in Eqtatiors (L15) and (L16) correspmd to a rmn-V

Udienioalized state wctor 2Z and the elements in the twov matrices are functkics of mn-

dunrrmionahized lumped prameters fa and fl.
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